
Complex Systems Engineering

Neural Networks

Prof. Dr. Christin Seifert

December 13, 2017

University of Passau, WS 2017/2018

OVERVIEW

1. Introduction
2. Biological Neural Networks
3. Perceptron
4. Machine Learning Basics
5. Gradient Descent

6. Types of Neurons
7. Back-Propagation
8. Training Heuristics
9. Special Architectures
10. Summary

1

Introduction

INTRODUCTION

Neural networks learn understand the world [13]

Figure 1: Scene Understanding (Generated with https://www.clarifai.com/demo)

2

https://www.clarifai.com/demo

INTRODUCTION

Neural networks writing by hand [4]

• Recurrent neural networks can be used to generated sequences,
models can also include memory (Long short-term memory
networks, LSTM)

• Network trained on corpus from 221 writers, learnt to produce
new text in their handwriting

Figure 2: Three handwritten samples for the same text (generated with
http://www.cs.toronto.edu/˜graves/handwriting.html)

3

http://www.cs.toronto.edu/~graves/handwriting.html

INTRODUCTION

Neural networks as artists [1]

• Deep neural network (Convolutional Neural Network) trained on
artistic images

• Network learnt to separate image content from image style

• Given a new image it can apply any (learnt) artistic style

• Demo available at https://deepart.io/

4

https://deepart.io/

INTRODUCTION

Figure 3: Input image (left) plus style (right)

5

INTRODUCTION

Figure 4: DeepArt.io Result 6

INTRODUCTION

Figure 5: Input image (left) plus style (right)

7

INTRODUCTION

Figure 6: DeepArt.io Result

8

INTRODUCTION

Neural networks as strategy game players [8]

• Chinese game Go has 10170

board configurations (more
than atoms in the universe,
much more complex than
chess)

• Artificial intelligence AlphaGo
uses deep neural networks

• In October 2015 AlphaGo
won against the European Go
Master Fan Hui (using 1,202
CPUs and 176 GPUs)

• Webpage
https://deepmind.com/

research/alphago/

Figure 7: First 99 turn in
tournament (Public Domain, via
Wikimedia Commons)

9

https://deepmind.com/research/alphago/
https://deepmind.com/research/alphago/

INTRODUCTION

Neural networks control robot movements [6]

• Including convolutional neural networks in robot control loops
improves movement

Figure 8: Robot grasping office objects (Full video available
https://www.youtube.com/watch?v=H4V6NZLNu-c (1:50 min)) 10

https://www.youtube.com/watch?v=H4V6NZLNu-c

HISTORY

• 1940s–1960s: Cybernetics
• Theories about how the brain learns
• Warren Sturgis McCulloch, Walter Pitts, Donald Olding Hebb

(Hebbian learning), Frank Rosenblatt (perceptron)
• Simple linear models, failed to solve easy task (XOR)

• 1980s–1990s: Connectionism
• David Rummelhart (backpropagation algorithm)
• Multi-layer networks
• Outperformed by other methods and hard to train

• 2006 –now: Deep Learning
• Networks with many layers (deep) achieving near human

performance on some tasks
• Depend on huge data sets (Big Data) and require great processing

power (mostly GPUs are used)
• Geoffrey Hinton, Yoshua Bengio, Yann LeCunn (Canadian Institute

for Advanced Research)

11

HISTORY

Figure 9: Phrases occurring in English books over time. No books on ”deep
learning” or ”deep neural networks” in the books of the corpus. (generated with
Google n-grams viewer https://books.google.com/ngrams/), data set ids 20120701 and
20090715

12

https://books.google.com/ngrams/

HISTORY

• Size of data sets increased dramatically over the years
• Some examples:

Data Set Year Number of Items

Iris Flower 1936 150
Cars 1990 1,728
MNIST Digits 1998 70,000
CIFAR10 2009 60,000
ImageNet 2009 14,197,122
Google News Texts 2013 3,000,000

• Deep Learning is only successful with Big Data (because deep
networks have many parameters that need to be ”fixed”)

• Rule-of-thumb in 2016: supervised deep learning can do well
with 5,000 items per category, can achieve near-human
performance with 10,000,000 examples.

13

Biological Neural Networks

THE HUMAN NERVOUS SYSTEM

• Life of multicellular organisms is steered by the nervous system

• The nervous system receives input from the environment (sensor
signals) and creates output

• Sensor input examples
• Smell
• Vision
• Audio signals

• Output
• Behavior
• Thoughts
• Movements

14

THE HUMAN NERVOUS SYSTEM

The human nervous system consists of two main parts

• Central nervous
system (CNS)

• Brain and spinal
cord

• Control center

• Peripheral nervous
system (PNS)

• Cranial and spinal
nerves

• Communication
lines between body
and CNS Figure 10: Human nervous system (CC-SA

4.0, OpenStax, via Wikimedia Commons)

15

THE HUMAN NERVOUS SYSTEM

Figure 11: Human Nervous System (CC-SA 3.0, theEmirr, via Wikimedia Commons)
16

THE HUMAN BRAIN

Some statistics:

Weight 1.3 kg
Volume 1200 cm3

Number of neurons 86 billion
Length of nerve fibres 5,8 million km
Main Areas Cerebral cortex (Großhirn), Dien-

cephalon (Zwischenhirn), Cerebellum
(Kleinhirn), Brainstem

17

THE HUMAN BRAIN

Figure 12: Functional areas (CC-BY 3.0, Blausen.com staff (2014). ”Medical gallery of
Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010)

18

NEURONS

Anatomy

• cells responsible for transmitting nerve impulses
• 3 types of neurons (sensory, motor and interneurons)

Figure 13: Anatomy of a neuron (CC-SA 3.0, Dhp1080 via Wikimedia Commons)

19

NEURONS

Anatomy

• Dendrite: nerve endings for incoming signals, generally shorter
than axons

• Axon: nerve ending for outgoing signal, can be up to 1 m in
length; combination of Myelin sheath, Schwann cells and nodes
of Ranvier support fast signal transmission across the length of
the axon (the action potential ”jumps” from node to node)

• Cell Body: sums up the incoming signals and generates an
outgoing signal if the aggregated incoming signal is above a
certain threshold

• Synapse: Connection at the terminal end of axons or dentrites,
transmits the signal from one neuron to another

20

NEURONS

Synapses

Figure 14: Types of synapses (CC-BY 3.0, Blausen.com staff (2014). ”Medical gallery of
Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010)

21

NEURONS

Signal Transmission

1. If a neuron gets excited it generates an electrical action potential
in the cell body.

2. At a synaptic junction there is the synaptic cleft between the
releasing and the receiving neuron.

3. The electrical signal is translated into a chemical signal. The
synapse releases chemicals, so called neurotransmitters.

4. The neurotransmitters cross the synapic cleft and enter the
receiving neuron through receptors.

5. The chemical signal is translated back to a electrical signal in the
receiving neuron.

6. Neurotransmitters are transported back to the releasing neuron
or degraded.

Explanatory video https://en.wikipedia.org/wiki/File:

Neuron_action_potential.webm (10:00 min)
22

https://en.wikipedia.org/wiki/File:Neuron_action_potential.webm
https://en.wikipedia.org/wiki/File:Neuron_action_potential.webm

NEURONS

Post-Synaptic Signals

• An action potential is generated if the incoming signals are above
a certain threshold.

Figure 15: Incoming activation does not (left) and does create an action
potential (right) (CC-SA 3.0, Dake via Wikimedia Commons)

23

NEURONS

Synaptic plasticity

• Synaptic strength (the strength of the signal transmitted over an
active synapse) can vary over time.

• Changes in synaptic strength are the basis of learning and
memory.

• Strength of the synapse can be altered by changing the number
of released neurotransmitters, and the sensitivity of the receiving
cell to those neurotransmitters.

24

NEURONS

Model of a neuron

X

dentrites threshold

cell body

aggregation

axon

Figure 16: Schematic model of a neuron

25

NEURONS

Model of a network of neurons

X

X

X

Figure 17: Schematic model of a network of neurons 26

THE HUMAN BRAIN

Human Brain Supercomputer 2011

Data Storage 3.5 quadrillion bytes 30 quadrillion bytes
Processing Speed 2.2 billion megaflops 8.2 billion megaflops
Power Consumption 20 watts 9.9 million watts
Storage Method associative address-based
Parallelisation massively parallel (mostly) serial

Notes:

• Numbers based on https://www.scientificamerican.com/

article/computers-vs-brains/

• quadrillion 1015, billion 109

• Ted Talk ”What is so special about our brain?”
https://www.youtube.com/watch?v=_7_XH1CBzGw (13:31 min)

27

https://www.scientificamerican.com/article/computers-vs-brains/
https://www.scientificamerican.com/article/computers-vs-brains/
https://www.youtube.com/watch?v=_7_XH1CBzGw

Perceptron

PERCEPTRON

The perceptron is the simplest neural network, with only one node
that does computations.

x1

x2

x3

xn

...

X
y

w1

w2

w3

wn

b

Figure 18: Perceptron

• x = (x1, . . . , xn)T is the input vector
• w = (w1, . . . ,wn)T is the weight vector of the incoming edges
• b is a bias term
• y ∈ {0,1} is the output

28

PERCEPTRON

The perceptron does the following computations

• First, it calculates the weighted sum s of the inputs

s =
n∑

i=1

wixi + b

• If this sum is greater than zero, it outputs 1, otherwise 0

y = h(s) with h being the heaviside function

Figure 19: Heaviside function (Public Domain, via Wikimedia Commons)

29

EXERCISE

Calculate the output of the perceptron for the following input vectors:
x1 = (0,0,0)T , x2 = (−0.5,−1,1)T

x1

x2

x3

X
y

0.4

0.5

�0.7

1.2

y1 = 1, y2 = 0

30

PERCEPTRON

• Computation of perceptron

y = h(
n∑

i=1

wixi + b)

• Which is equivalent to

y = h(wT x + b)

Note:

• Sometimes the bias b is included in the weight vector as follows: The
input vector is extended to x = (x0, x1, . . . , xn)

T with x0 = 1. The weight
vector is then w = (w0,w1, . . . ,wn)

T with w0 = b.

• This notation is equivalent and leads to a mathematically more compact
notation. However, in terms of computation leaving out the bias is more
efficient (in the future this means, less effort in terms of matrix
multiplication).

31

EXERCISE

Calculate wT x with w = (0.4,0.5,−0.7)T , x = (−0.5,−1,1)T

wT x = −1,4

32

PERCEPTRON – EXAMPLE

• Perceptron with 2 binary input units.

x1

x2

y
0.3

0.2

b = �0.4

• Represents the following function (logical AND)

x1 x2 s y

0 0 -0.4 0
0 1 -0.2 0
1 0 -0.1 0
1 1 0.1 1

33

PERCEPTRON – LIMITATIONS

• The computation function of a perceptron

y = h(wT x + b)

corresponds to a hyperplane in n-dimensional space

• 0 = wT x + b = w1x1 + w2x2 + . . .+ b = 0 is the equation for a
hyperplane (e.g. 2x1 + 3x2 = 0 in R2)

• Thus, a perceptron can learn to represent any hyperplane (by
adapting the weights w).

• The perceptron is a linear classifier.

34

PERCEPTRON – LIMITATIONS

• The perceptron is a linear classifier and can learn to separate
linearly separable data.

x1

x2

x1

x2

Figure 20: Linearly separable data (left) and inseparable data (right)

35

PERCEPTRON – LIMITATIONS

• A perceptron can learn the logical functions AND, OR, NAND,
NOR; but not XOR.

• Any logical function can be represented as a combination of
AND, OR, NOT or NAND, or NOR.

• This means, any Boolean function can be learned by a neural
network with at least 2 layers1

• This gives rise to the idea of using multi-layer neural networks for
learning complex functions.

1Because every Boolean function can be represented in disjunctive normal form.

36

PERCEPTRON – TRAINING

Definition (Perceptron Training Rule)
For a given training example (x, y) the perceptron adapts its weights
based on the following training rule:

error = y − h(wT x)

∆wj = η · error · xj

wj ← wj + ∆wj

with xj being the j-th entry in the input feature vector wj the weight of
the j-th edge and η the learning rate.
In matrix form:

w← w + η(y − h(wT x + b))x

37

PERCEPTRON – TRAINING

Algorithm: PT Perceptron Training

Input: D Training examples of the form (x, y), y ∈ {0, 1}.
η Learning rate, a small positive constant.

Output: w Weight vector.

PT (D, η)

1. initialize random weights(w), t = 0

2. REPEAT

3. t = t + 1

4. (x, y) = random select(D)

5. error = y − h(wT x + b)

6. FOR j = 0 TO p DO

7. ∆wj = η · error · xj

8. wj = wj + ∆wj

9. ENDDO

10. UNTIL(convergence() OR t > tmax)

11. return(w)

38

PERCEPTRON – TRAINING

Definition of an (affine) hyperplane: nT x = d .

• n denotes a normal vector that is perpendicular to the
hyperplane.

• If ||n|| = 1 then |d | corresponds to the distance of the origin to
the hyperplane.

• If nT x < d and d ≥ 0 then x and the origin lie on the same side
of the hyperplane.

39

PERCEPTRON – TRAINING

Definition of an (affine) hyperplane: wT x + b = 0 ⇔
n∑

j=1

wjxj = −b.

40

PERCEPTRON – TRAINING

• A perceptron defines a hyperplane that is perpendicular
(= normal) to (w1, . . . ,wn)T .

• −b specify the offset of the hyperplane from the origin, along
(w1, . . . ,wn)T .

• The set of possible weight vectors w = (w0,w1, . . . ,wn)T form the
hypothesis space H (that is everything the perceptron can learn).

• Weight adaptation means learning, and the shown learning
paradigm is supervised.

41

PERCEPTRON – TRAINING

• The error for one training sample can either be 0, 1 or -1.

y h(wT x + b) error

0 0 0
0 1 -1
1 0 1
1 1 0

• The computation of the weight difference ∆wj in Line 7 of the
perceptron training algorithm (slide 38) considers a feature
vector x component-wise. In particular, if some xj is zero, ∆wj

will be zero as well.

42

PERCEPTRON – TRAINING

• Weight update for example that is classified as 0, but should be
1.

• The hyperplane is rotated towards the example.

w =

✓
1
1

◆

x =

✓
0.2
�1

◆

y = 1

h(wT x) = 0

x =

✓
0.2
�1

◆

w0 =

✓
1.2
0

◆

w0 = w + x

Figure 21: Perceptron weight update schema, case 1

43

PERCEPTRON – TRAINING

• Weight update for example that is classified as 1, but should be
0.

• The hyperplane is rotated away from the example.

w =

✓
1
1

◆

y = 0

h(wT x) = 1
w0 = w � x

x =

✓
0.4
�0.3

◆

x =

✓
0.4
�0.3

◆

w0 =

✓
0.6
1.3

◆

Figure 22: Perceptron weight update schema, case 2

44

PERCEPTRON – TRAINING

Example

• Example images are presented to the perceptron.
• The perceptron has to decide whether the image contains the

letter A or B.

Figure 23: Simple classification task

45

PERCEPTRON – TRAINING

• The encoding of the examples is based on features: number of
line crossings, most acute angle, longest line, etc.

• The class label, y , is encoded as a number. Examples from A
are labeled with 1, examples from B are labeled with 0.

x11

x12

...
x1n

. . .

xk1

xk2

...
xkn

︸ ︷︷ ︸

Class A ' y = 1

xl1

xl2
...

xln

. . .

xm1

xm2

...
xmn

︸ ︷︷ ︸

Class B ' y = 0

46

PERCEPTRON – TRAINING

• Initial configuration of items in feature space (projected to 2D)

Figure 24: Feature space

47

PERCEPTRON – TRAINING

Figure 25: Feature space

48

PERCEPTRON – TRAINING

Figure 26: Feature space

• Initial (random) hyperplane
49

PERCEPTRON – TRAINING

Figure 27: Feature space

• Item is classified as 0 (B), but should be 1 (A)
50

PERCEPTRON – TRAINING

Figure 28: Feature space

• Item is classified as 0 (B), but should be 1 (A) (it lies not in the
direction of the normal vector) 51

PERCEPTRON – TRAINING

Figure 29: Feature space

• Hyperplane is rotated towards the example (dashed: before
weight update, solid line: after weight update) 52

PERCEPTRON – TRAINING

Figure 30: Feature space

• Classifier after training one example
53

PERCEPTRON – TRAINING

Figure 31: Feature space

• Next weight udpate
54

PERCEPTRON – TRAINING

Figure 32: Feature space

• Classifier after two training examples
55

PERCEPTRON – TRAINING

Figure 33: Feature space

• Next weight update leads to zero errors
56

PERCEPTRON CONVERGENCE THEOREM

Theorem (Perceptron Convergence)
Let X0 and X1 be two finite sets with vectors of the form
x = (x1, . . . , xn)T , let X1 ∩ X0 = ∅, and let ŵ define a separating
hyperplane with respect to X0 and X1. Moreover, let D be a set of
examples of the form (x,0), x ∈ X0 and (x,1), x ∈ X1. Then the
following holds:

If the examples in D are processed with the perceptron training
algorithm (cf. slide 38) the underlying weight vector w will converge
within a finite number of iterations.

• If a separating hyperplane exists, i.e., the data is linearly
separable, the perceptron training algorithm converges.

57

PERCEPTRON CONVERGENCE THEOREM

• The perceptron algorithm will not converge if a separating
hyperplane does not exist.

Figure 34: Linearly separable data left vs. linearly not separable data (right). 58

Machine Learning Basics

MACHINE LEARNING

Definition (Machine Learning)
A computer program is said to learn

• from experience

• with respect to some class of tasks and

• a performance measure,

if its performance at the tasks improves with the experience [7].

59

MACHINE LEARNING

Examples:

• Robot navigation
• Task: navigate its way
• Performance measures: Length of the route / number of times the

robot reached its goal (without the battery being empty before /
number of accidents (wall bumps) / ..

• Experience: navigations through training mazes

• Credit card fraud detection
• Task: recognize fraudulent transactions
• Performance measures: number of fraudulent transactions

recognized / number of transactions correctly recognized / money
saved

• Experience: history of transactions with annotation whether they
were fraudulent or not

60

MACHINE LEARNING PARADIGMS

Three basic types of machine learning algorithms, dependent on the
type of feedback (experience) the learner receives.

• Supervised Learning
Learner receives the desired output for an input from a ”teacher”.

• Unsupervised Learning
Learner only has the input data and aims to detect patterns in
this data.

• Reinforcement Learning
Learner takes action in an environment and receives a reward.
Reward might come only at the end of a very long sequence of
actions and might also be very simple, such as +1 (success) and
-1 (failure).

A machine learning system may also use combinations of paradigms
(e.g. semi-supervised learning).

61

MACHINE LEARNING PARADIGMS

Examples:

• Supervised Learning
• Optical character recognition
• Credit card fraud detection
• Object recognition (ReCaptchas are used for getting training data)

• Unsupervised Learning
• Anomaly detection
• Customer segmentation (special case of clustering)

• Reinforcement Learning
• Robot navigation
• Robot walk
• Chess

62

SUPERVISED MACHINE LEARNING

Supervised learning is further distinguished depending on the type of
output variable.

• Classification
The output of the learner (and the desired output presented by
the teacher) is a set of categories.
E.g. recognize hand-written digits. Categories are 0,1, . . . ,9.

• Regression The output of the learner is a real-valued number.
E.g. predict the prize of a house.

63

TAXONOMY OF MACHINE LEARNING

single-label multi-label

hierarchical

unary binary multi-class

type of feedback

type of output

number and structure of classes

Machine Learning

Unsupervised ReinforcementSupervised

Classification Regression

flat

Figure 35: Taxonomy of machine learning algorithms (simplified) 64

NOTATION FOR SUPERVISED LEARNING

Notation

• nx – input feature vector size

• ny – output size (number of classes)

• x = (x1, . . . , xnx) – input vector

• y – desired output (target)

• ŷ – predicted output (what the learner produces)

• (x (1), y (1)) – training item (first example from the training data)

• m – number of examples in the data set

• X ∈ Rnx×m – input matrix (each item is a column, each feature is
a row)

65

NOTATION FOR SUPERVISED LEARNING

Example hand-written digit classification2

Figure 36: Example
hand-written digit

• nx = 64 (8x8 pixels)

• ny = 10 (numbers from 0 to 9)

• x (1) =

(0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0, . . .)T

(each pixel is either not-filled – 0 or filled
– 1. Rows of the image are concatenated
to form the feature vector)

• y (1) = 2

• X = (x (1), x (2), . . . , x (m))

X =

x1
1 . . . xm

1
...

...
x1

nx
. . . xm

nx

2Note, that many more feature representations are possible
66

CLASSIFICATION PIPELINE

Generate
Classifier

Evaluate
Classifier

Apply
Classifiersatisfied yes

no

Dtrain Dtest Da

Figure 37: Classification Pipeline (simplified)

• A classifier is trained on the training data set Dtrain and then
evaluated on the test data set Dtest .

• If the performance is satisfactory, the classifier is applied to the
unlabeled data from the application Da. If not, the classifier has
to be retrained (e.g. with more training data, with different
parameters, or a different classifier).

67

DATA SETS

Note
The classifier has to be evaluated on a different data set than has
been used for training. Otherwise the classifier can ”just remember
the training data” and can not be assured to generalize to unseen
data. That means Dtrain 6= Dtest , optimally Dtrain ∩ Dtest = ∅.

Assumption for learning:

• The data samples in Dtrain, Dtest and Da stem from the same
population, i.e., have similar statistical properties.

• Counter-example: A classifier for hand-written digit recognition
was trained on handwriting from school children and is applied to
handwritings from adults.

68

CLASSIFIER EVALUATION

Definition (Classification Error)
The classification error on a data set D is defined as follows:

E(D) =
1
m
∣∣{1 ≤ i ≤ m : y (i) 6= ŷ (i)}

∣∣

with ŷ being the predictions of the classifier.

• Classification error counts how many predictions are wrong. The
error is then the rate of wrong predictions.

• Classification Accuracy A = 1− Err .

69

CLASSIFIER EVALUATION

Definition (Loss Function)
A loss function defines the ”loss of quality” given a prediction and
the desired output: L(y , ŷ). Common loss functions are

• Squared loss L(y , ŷ) = 1
2 (y − ŷ)2

• 0-1 loss L(y , ŷ) = I(y 6= ŷ) with I being an indicator function.

• The prediction error is the loss aggregated over the data set:

E =
1
m

m∑

i=1

L(y (i), ŷ (i))

• Classification error is the aggregation of the 0-1 loss.

• Summed Squared Error (SSE) is the aggregation of the squared
loss.

70

CLASSIFIER EVALUATION

Examples:

• Consider a data set on object recognition. In the data set are 20
objects, 10 images for each object. Total 200 images. The
classifier correctly classifies 190 of them. The classification error
is 0.05 (5%).

• Consider a data set on cancer detection. The data set contains
100 samples. 95% of all samples are labeled ”no cancer” only
5% are labeled ”cancer”. A classifier that assigns all samples to
”no-cancer” has a classification error of 5%.

71

CLASSIFIER EVALUATION

Note
Classification error is not always the best evaluation measure,
especially for problems with strong non-uniform class distributions
(see cancer example). At least, the error has to be compared to
naive baselines (trivial acceptor, trivial rejector, random classifier).

• Many more evaluation measures exist (true positive rate,
precision, recall, sensitivity, classification cost,..)3.

3Those are not part of this lecture

72

CLASSIFIER EVALUATION

Holdout Estimation

• Labeled data set is randomly split into train and test data set.
Classifier is trained on Dtrain and evaluated on Dtest .

• Common split ratios are 60-40 and 70-30.

• We get two error estimations ErrDtrain and ErrDtest .

Dtrain

Dtest

Figure 38: Train-test splits for holdout-error-estimation

73

CLASSIFIER EVALUATION

Cross-Validation

• Labeled data set is randomly split into k disjoint subsets.
Classifier is trained k times on respective Dj

train and evaluated on
respective Dj

test . k is usually either 3, 5 or 10.
• We get 2k error estimations ErrDj

train
and ErrDj

test
.

• Cross-validation error is then

Errcv =
1
k

k∑

j=1

ErrDj
test

3 splits fold 1 fold 2 fold 3

Dtrain

Dtrain
Dtest

Dtest

DtestDtrain

Dtrain

Figure 39: Train-test splits for cross-validation 74

CLASSIFIER EVALUATION

• Cross-validation is computationally more expensive (classifier
has to be trained k times) but provides the more realistic error
estimation.

• Cross-validation only reasonably applicable to small data sets.

• Leave-on-out estimation is cross-validation with the test set
containing exactly 1 data sample.

• When splitting the data set into subsets it has to be ensured that
training an test sets retain the same properties (underlying
distribution). Mostly, random splits is a reasonably good choice.

75

CLASSIFIER EVALUATION

Learning curves

• Plot the error on the train and test split for different sizes of the
training data set.

• The training error gets worse with more training data, because
the classifier has to include more (and different) data points into
its model.

• The test error (the error on unseen samples) gets better,
because the classifier has been able to learn from more data.

m(training set size)

E

EDtrain

EDtest

Figure 40: Sample learning curve 76

CLASSIFIER EVALUATION

Bias vs. Variance

• Bias and variance are two common problems in machine learning

• Errors based on bias are errors stemming from wrong
assumptions about the problem
E.g. fitting a straight line to data point lying on a curve

• Errors based on variance stem from (unimportant) variances in
the training data set to which the classifier adapts to.
E.g. fitting a higher-order polynomial to a data set which samples
lie on a quadratic curve

77

CLASSIFIER EVALUATION

Bias vs. Variance

• Bias and variance for data points sampled from quadratic
function

• Green curve is the current predictor (hypothesis)

x2

x

x

x
x

x

x

x

x1

Hypothesis

x2

x

x

x
x

x

x

x

x1

Hypothesisx

Figure 41: High bias (left) and high variance for which the classifier adapts to
an outlier (right)

78

CLASSIFIER EVALUATION

High Bias – Underfitting

m(training set size)

E

EDtrain

EDtest

Figure 42: Learning curve indicating high bias)

• Error on train and test set are both high
• More training data does not improve the model
⇒ choose a more complex model (e.g. more layers in the neural

network)

79

CLASSIFIER EVALUATION

High Variance – Overfitting

m(training set size)

E

EDtrain

EDtest

Figure 43: Learning curve indicating high variance)

• Error on train set is low, error on test set is high
• Classifier is well adapted to training data, but can not generalize

to unseen data
⇒ choose a simpler model (e.g. less layers in the neural network)

or get more training data 80

CLASSIFIER EVALUATION

• Error on training and test set should be similar (it means that the
classifier generalizes well).

• Error on both, Dtrain and Dtest should be small (this means the
model does not suffer from high bias).

m(training set size)

E

EDtrain

EDtest

m(training set size)

E

EDtrain

EDtest

m(training set size)

E

EDtrain

EDtest

Figure 44: Learning curve indicating high bias (left), high variance (center),
good fit (right)

81

MACHINE LEARNING BASICS – SUMMARY

• Learning systems adapt to experiences.

• In case of supervised learning, experiences are data samples
together with the ”truth” given by a ”teacher”.

• A learning algorithm needs to know what to optimize for, thus we
define a loss function and an error (which we want to minimize).

• Learning the model and evaluating its performance needs to be
done on different data (sub-)sets.

• Plotting of learning curves helps to find common problems in
machine learning, namely bias and variance.

82

MACHINE LEARNING BASICS – SUMMARY

Important Concepts

• Supervised, unsupervised learning; reinforcement learning

• Cross-validation

• Learning Curve

• Loss function, classification error

• Train and test data set

83

Gradient Descent

GRADIENT DESCENT

x1

x2

x3

xn

...

X
y

w1

w2

w3

wn

b

• Perceptron training rule learns a separating hyperplane if the
data is linearly separable4.

w ← w + η(y − h(wT x))x

• If data is not linearly separable the perceptron might fail to
converge.

⇒ The delta rule for training perceptrons finds a best-fit
approximation for the hyperplane if the data is not linearly
separable.

4We use the notation from slide 65 here. Note that x is a vector, while y is a scalar.
84

GRADIENT DESCENT

Delta Rule and Gradient Descent

• The key idea behind the delta rule is gradient descent.

• Gradient descent is the basis for learning algorithms for
multi-layered networks.

85

GRADIENT DESCENT

• Consider an untresholded perceptron, i.e., a perceptron that only
takes the weighted sum of the inputs.

• The function σ the perceptron applies to a data point is then

σ(x) = wT x

• Consider a measure of the training error (see slide 70) for a
specific perceptron which is specified by its weights w

E(w) =
1
2

m∑

i=1

(y (i) − σ(x (i)))2 =
1
2

m∑

i=1

(y (i) − wT x (i))2 (1)

• The error is then the squared difference between the intended
output and the actual output summed over the training data

86

GRADIENT DESCENT

• Error in weight space is a convex function of the weights
• The optimal solution (weights that result in the smallest error) is

at the bottom of the ”bowl”

w1
w2

error

0

50

100

150

200

Figure 45: Convex error surface in weight space 87

GRADIENT DESCENT

Intuition

• The x-y plane spans all possible
solutions (the hypothesis space).

• Start with any solution.

• Follow the direction of the steepest
descent of the error surface to get new
weights.

• Evaluate the new solution and again,
follow the direction of steepest descent.

• Start with large steps towards the
bottom and then make smaller steps so
as not to overshoot the target.

• The direction of steepest descent is
characterized by the gradient of the
function at a particular point w .

w1
w2

error

0

50

100

150

200

88

GRADIENT DESCENT

• Direction of steepest ascent characterized by the gradient.

∇E(w) =
[∂E
∂w1

,
∂E
∂w2

, . . . ,
∂E
∂wnx

]

• In weight space ∇E(w) is a vector pointing towards the direction
of steepest ascent from a starting point w .

• Weight update is as follows:

w ← w + ∆w ∆w = −η∇E(w)

• The minus sign ensures that we walk into the direction of steepest
descent (towards the minimum).

• η is the learning rate, determining the size of the step

• Formula can also be written component-wise

wi ← wi + ∆wi ∆wi = −η ∂E
∂wi

89

GRADIENT DESCENT

Derivation of the gradient for perceptron training error of formula 1

∂E
∂wi

=
∂

∂wi

1
2

m∑

k=1

(y (k) − wT x (k))2 //sum rule

=
m∑

k=1

∂

∂wi

1
2

(y (k) − wT x (k))2

=
1
2

m∑

k=1

2(y (k) − wT x (k))
∂

∂wi
(y (k) − wT x (k))

=
m∑

k=1

(y (k) − wT x (k))
∂

∂wi
(y (k) − wT x (k)) //i-th component only

∂E
∂wi

=
m∑

k=1

(y (k) − wT x (k))(−x (k)
i)

90

GRADIENT DESCENT

Definition (Perceptron Delta Rule (Gradient Descent))

For a given training example (x (k), y (k)) the perceptron adapts its
weights based on the following training rule:

wi ← wi + ∆wi

∆wi = η

m∑

k=1

(y (k) − wT x (k))x (k)
i

with x (k)
i being the i-th entry in the k input feature vector wi the

weight of the i-th edge and η the learning rate.

• The update rule is tied to the concrete error function (which may
in general not be convex).

• The perceptron converges to a optimal solution if η is sufficiently
small.

• Converging can sometimes be rather slow.
91

GRADIENT DESCENT

Data: Training Data (x , y)

Result: Weight vector w
Initialize wi to small random value;
repeat

∆wi = 0;
/* sum up weight changes */

for each training example (x (k), y (k)) do
ŷ (k) = wT x (k);

∆wi ← ∆wi + η(y (k) − ŷ (k))x (k)
i ;

end
/* apply weight changes */

for each weight wi do
wi ← wi + ∆wi ;

end
until termination condition is met ;

Algorithm 1: Gradient Descent Algorithm
92

GRADIENT DESCENT

• Gradient descent searches through the hypothesis space and is
generally applicable if

1. parameter space is continuous
2. error function is differentiable w.r.t. parameters

• If error surface has multiple minima gradient descent is not
guaranteed to find the global minimum

• Convergence can be slow, at each iteration the model needs to
be applied to the whole training data set
⇒ Stochastic Gradient Descent approximates the gradient
descent solution by updating weights after each data item

93

STOCHASTIC GRADIENT DESCENT

Data: Training Data (x , y)

Result: Weight vector w
Initialize wi to small random value;
repeat

∆wi = 0;
/* apply weight changes */

for each training example (x (k), y (k)) do
ŷ (k) = wT x (k);

wi ← wi + η(y (k) − ŷ (k))x (k)
i ;

end
until termination condition is met ;

Algorithm 2: Stochastic Gradient Descent Algorithm

94

SUMMARY

• Gradient descent updates the weights after calculating the error
for all training samples (the batch), also called batch gradient
descent

wi ← wi + ∆wi

∆wi = η

m∑

k=1

(y (k) − wT x (k))x (k)
i

• Stochastic gradient descent updates the weights after each
training sample, also called incremental gradient descent

wi ← wi + η(y (k) − ŷ (k))x (k)
i

• Also known as delta rule, Widrow-Hoff rule and Adaline rule
• If η is sufficiently small stochastic gradient descent approximates

gradient descent at arbitrary accuracy.

95

Types of Neurons

TYPES OF NEURONS

Sigmoid Units

• Values in [0,1], for large positive and large negative values of x ,
the gradient is nearly zero

σ(x) =
1

1 + e−x
∂

∂x
σ(x) = σ(x)(1− σ(x))

−1.0 −0.5 0.0 0.5 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

x

si
gm

oi
d(

x)

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

si
gm

oi
d(

x)

96

TYPES OF NEURONS

Tanh Units(Tangens hyperbolicus)

• Values in [−1,1], for large positive and large negative values of
x , the gradient is nearly zero

tanh(x) =
ex − e−x

ex + e−x
∂

∂x
tanh(x) = 1− tanh(x)2

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5

x

ta
nh

(x
)

−10 −5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

ta
nh

(x
)

97

TYPES OF NEURONS

ReLU (Rectified Linear Units)

• Values in [0,1], gradient is 1 for all positive values, undefined for
0, but in practice it can be set to either 0 or 1

relu(x) = max(x ,0)
∂

∂x
relu(x) =

1 for x > 0

0 for x < 0

undefined x = 0

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

vr
el

u(
x)

−10 −5 0 5 10

0
2

4
6

8
10

x

vr
el

u(
x)

98

TYPES OF NEURONS

LReLU (Leaky Rectified Linear Units)

• Adaptation of ReLU, with small constant gradient for values
smaller than 0

lrelu(x) = max(x ,0.001)
∂

∂x
lrelu(x) =

1 for x > 0

0.001 for x < 0

undefined x = 0

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

vl
re

lu
(x

)

−10 −5 0 5 10

0
2

4
6

8
10

x

vl
re

lu
(x

)

99

SUMMARY

• Neuron types usage in practise, rules of thumb (as of 2017)

Unit type Comment

σ in output layer for binary classification
tanh mostly superior to σ
relu similar usage to tanh, use when problems with van-

ishing gradients
lrelu shown to be better than relu, but not much used in

practise

100

Back-Propagation

NOTATION

Notation

• nx – input feature vector size

• ny – output size (number of classes)

• y – desired output (target)

• ŷ – predicted output (what the learner produces)

• (x (k), y (k)) – k − th training item

• m – number of examples in the data set

• X ∈ Rnx×m – input matrix (each item is a column, each feature is
a row)

• L – number of layers in the network

• nl
h – number of units in the l-th hidden layer

• superscript [l] denotes the index of the layer

• bk ∈ Rnk
h – bias vector for k − th layer

• W [k] ∈ Rnk
h×nk−1

h – weight matrix before k − th layer 101

NOTATION

• By convention, a neural network with one input, one hidden and
one output layer is called a 2-layer neural network (the input layer
does not count as its units do not compute anything)

W [1] 2 R3⇥2 W [2] 2 R1⇥3

b[2] 2 R1b[1] 2 R3

z
[k]
i a

[k]
i

input layer output layerhidden layer

single neuron

Figure 46: Simple 2-3-1 multi-layered network
102

NOTATION

• Vector-notation for the example network on the previous slide

a[0] = x =

(
x1

x2

)

b[1] =

b[1]
1

b[1]
2

b[1]
3

 , z [1] =

z [1]
1

z [1]
2

z [1]
3

 , a[1] =

a[1]
1

a[1]
2

a[1]
3

b[2] =
(

b[2]
1

)
, z [2] =

(
z [2]

1

)
, a[2] = y =

(
a[2]

1

)

W [1]T =

−w [1]T

1 −
−w [1]T

2 −
−w [1]T

3 −

 ∈ R3×2, W [2]T =

(
−w [2]T

1 −
)
∈ R1×3

• with w [1]
1 being the vector of input weights for the first unit in the

first hidden layer
• w [k]

i,j can be read as: weight from unit i to unit j in layer k
103

FOWARD CALCULATION

Forward Pass

z [1] = W [1]T x + b[1], a[1] = σ(z [1])

z [2] = W [2]T a[1] + b[2], a[2] = σ(z [2]) = ŷ

Checking the dimensions:

z [1] =

w [1]
1,1 w [1]

2,1

w [1]
1,2 w [1]

2,2

w [1]
1,3 w [1]

2,3

(

x1

x2

)
+

b[1]
1

b[1]
2

b[1]
3

 , a[1] = σ

z [1]
1

z [1]
2

z [1]
3

z [2] =
(

w [2]
1,1 w [2]

2,1 w [2]
3,1

)

a[1]
1

a[1]
2

a[1]
3

+

(
b[2]

1

)
, a[2] = σ

(
z [2]

1

)
= ŷ

• Note: σ is applied element-wise to a vector

104

BACK-PROPAGATION

General Idea

• Calculate the output of the net for a training example

• Calculate the loss/error for this training example

• Calculate the gradient of the error surface w.r.t. the weights in
each layer

• Adapt the weights in each layer

For the (simpler) derivation of the Back-Propagation algorithm we
make the following assumptions:

1. The activation function of the hidden and output units is the
sigmoid function σ (see slide 96).

2. We use the squared loss (see slide 70).

105

BACK-PROPAGATION

Loss function

• Forward pass to calculate ŷ

ŷ = a[2] = σ(z [2]), z [2] = W [2]T a[1] + b[2],

a[1] = σ(z [1]), z [1] = W [1]T x + b[1]

• We use the squared loss

L(y , ŷ) =
1
2

(y − ŷ)2

• To calculate the weight updates we need the partial derivatives of
the loss function w.r.t. to the model parameters W1, W2, b1, b2:
∂L

∂W [1] , ∂L
∂W [2] , ∂L

∂b[1] , ∂L
∂b[2]

106

BACK-PROPAGATION

Weight update

• The update for a single weight w [l]
ij in any layer is negative

derivative of the loss function w.r.t. to this weight

• We calculate the gradient and move in the direction of the
steepest descent (minus sign)

w [l]
ij ← w [l]

ij − η
∂L
∂w [l]

ij

107

BACK-PROPAGATION

Derivation for a single weight

• Derive equations for output units and hidden units separately

• Use a simplified notation as below

output unit

wij

bj

zj |aj|ai

hidden unit

zj |ajwij

bj

wjk

|ai

zk|ak

Figure 47: Simplified notation for output units (left) and input units (right)

108

BACK-PROPAGATION

For Output Units

wij

bj

zj |aj|ai

• Derive ∂L
∂wij

, observe that wij influence L through zj , and only
through zj (see figure). Using the chain rule for derivates we can
write

∂L
∂wij

=
∂L
∂zj

∂zj

∂wij

• Observe that zj influence L through aj , and only through aj . We
can write

∂L
∂wij

=
∂L
∂aj

∂aj

∂zj

∂zj

∂wij
109

BACK-PROPAGATION

For Output Units

wij

bj

zj |aj|ai

∂L
∂aj

=
∂

∂aj

1
2

∑

k∈Output

(yk − ŷk)2 =
∂

∂aj

1
2

(yj − ŷj)
2 = −(yj − ŷ) = −(yj − aj)

∂aj

∂zj
=

∂

∂zj
σ(zj) = σ(zj)(1− σ(zj)) = aj (1− aj)

∂zj

∂wij
=

∂

∂wij

∑

i

(wijai) + bj = ai

⇒ ∂L
∂wij

=
∂L
∂aj

∂aj

∂zj

∂zj

∂wij
= −(yj − aj)(aj (1− aj))ai

110

BACK-PROPAGATION

For Hidden Units

zj |ajwij

bj

wjk

|ai

zk|ak

• Derive ∂L
∂wij

, observe that wij influence L through zj , and only
through zj (see figure). Using the chain rule for derivates we can
write

∂L
∂wij

=
∂L
∂zj

∂zj

∂wij

• Observe that zj influence L through all zk , that is through all
nodes in the next layer. Therefore

∂L
∂wij

=
∑

k

(
∂L
∂zk

∂zk

∂zj
)
∂zj

∂wij
111

BACK-PROPAGATION

For Hidden Units

zj |ajwij

bj

wjk

|ai

zk|ak

• zj influences zk through aj , and only through aj . Using the chain
rule we can write:

∑

k

∂L
∂zk

∂zk

∂zj
=
∑

k

∂L
∂zk

∂zk

∂aj

∂aj

∂zj

• Getting the partial derivatives
∂zk

∂aj
=

∂

∂aj

∑

j

wjk aj + bk = wjk

∂aj

∂zj
= σ(zj)(1− σ(zj)) = aj (1− aj)

112

BACK-PROPAGATION

For Hidden Units

• Substituting back in
∑

k

∂L
∂zk

∂zk

∂zj
=
∑

k

∂L
∂zk

∂zk

∂aj

∂aj

∂zj
=
∑

k

∂L
∂zk

wjk aj (1− aj)

= aj (1− aj)
∑

k

∂L
∂zk

wjk

• Calculating the loss w.r.t. the weights

∂L
∂wij

= aj (1− aj)
(∑

k

∂L
∂zk

wjk
)
ai

• Note, that there are still partial derivates in the formula. However,
if we start from output units and iteratively apply the weight
update, we know ∂L

∂zk
because it can be directly computed for

output units

113

BACK-PROPAGATION

Propagating through the network

hidden layer

zj |aj
wjk

zk|ak

output layer

L

@L
@zk@L

@zj

X

k

@L
@zk

wjk

• For output units
∂L
∂wij

= −(yj − aj)(aj (1− aj))ai
∂L
∂zij

= −(yj − aj)(aj (1− aj))

• For hidden units
∂L
∂wij

= aj (1− aj)
(∑

k
∂L
∂zk

wjk
)
ai

• Weight update
wij ← wij − η ∂L

∂wij

114

BACK-PROPAGATION

Data: Data set {(x , y)}, trained neural network
Result: Trained neural network
Initialize w [k]

ij to small random values;

while termination criterion not met do
for each (x , y) do

/* forward pass */

calculate ŷ and activation ak of each unit;
/* backward pass */

for each output unit L do
δL = −(y − ŷ)(ŷ(1− ŷ))

end
for each hidden unit h do

δh = (ah(1− ah))
∑

k∈successors whkδk ;
end
for each weight wij do

wij ← wij + ηδj ai ;
end

end
end

Algorithm 3: Backpropagation with stochastic gradient descent
115

BACK-PROPAGATION

Notes

• The weight update for the bias units can be similarly calculated
(the formula only differs slightly from the formulas derived for wij).

• The formulas were derived for stochastic gradient descent, but
are not much different for batch gradient descent (only the loss
has to be replaced with the error).

• The derived formulas are tied to the specific choice of loss
function; for each choice of loss function the update rules for the
weights have to be derived separately.

• Because the error surface is in general non-convex,
backpropagation is only guaranteed to converge to a local
minimum, but works surprisingly well in practice.

116

BACK-PROPAGATION

oscillation

overshooting minima

stopping in bad minima

slow/no progress

weights

L

Figure 48: Possible backpropagation errors
117

BACK-PROPAGATION

Heuristics for avoiding typical backpropagation problems

• Weight initialization
• Start with different weight initializations (somewhere else in weight

space, this might lead to better minimum)

• Adaption of η
• Vary η over time
• Start with large learning rate e.g., 0.9, end with small learning rate,

e.g. 0.01

118

BACK-PROPAGATION

• There is no optimal learning rate for all problems (all surfaces of
the loss function)

Learning Rate
large small

advantages faster changes in
plateaus

less likely oscillations

faster movement towards
distant minima

small global minima can
be reached

disadvantages overshooting small min-
ima

large training time

oscillation more likely stalling in plateaus or lo-
cal minima

119

Training Heuristics

TRAINING HEURISTICS

General problems when training Neural Networks

• Overfitting (model fits
perfectly to a sample of
the data, but not to unseen
data points)

• Underfitting (model fits
poorly to the data)

• Slow training

• Bad performance (model
does not what it is
supposed to do, or does it
very poorly, for example
worse than random
guessing)

Figure 49: Examples of overfitting
(green classifier), underfitting (blue
classifier) and good fitting models
(brown classifier) (After work from
Chabacano, via Wikimedia Commons)

⇒ There are some heuristics what can be done.

120

RANDOM INITIALIZATION

0

0

00

0
0

0

0

0

0
a
[1]
1

a
[1]
2

a
[1]
3

a
[2]
1

Figure 50: Network with weights initialized to zero

• Consider a network with all weights initialized to zero
• Forward pass for training sample x would lead to all activations in

the hidden layer being the same, i.e., a[1]
1 = a[1]

2 = a[1]
3 .

• Backpropagating the error leads to the same update of all the
weights of W [2] (see formulas derived on slide 110) and
consequently all the weights of W [1] receive the same updates
(see formulas derived on slide 111).

121

RANDOM INITIALIZATION

• This is not only true for zero weights, but also for weights that are
the same (e.g. if all weights were initialized to 0.001).

• Thus, we need to break the symmetry in order for the network to
learn something.

⇒ Weights should be initialized with small random numbers.

122

VANISHING AND EXPLODING GRADIENTS

z1|a1

b1

w1 w2 w3 w4
z2|a2 z3|a3 z4|a4 L

b2 b3 b4

• Consider the simple network above

• The derivative of the loss w.r.t. to the first bias is

∂L
∂b1

= σ′(z1) · w2 · σ′(z2) · w3 · σ′(z3) · w4 · σ′(z4) · ∂L
∂a4

with σ′ being the derivative of the σ activation function

123

VANISHING AND EXPLODING GRADIENTS

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

si
gm

oi
d(

x)

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

x
si

gm
oi

dd
er

(x
)

Figure 51: Sigmoid activation function (left) and its derivative (right)

124

VANISHING AND EXPLODING GRADIENTS

• If the argument of the sigmoid function is large (either positive or
negative), the derivative σ′(·) is near zero

• σ′(·) is 0.25 at maximum

• For the derivative of the loss w.r.t. to weights and biases in lower
layers of the network, the single derivatives σ′(·) get multiplied,
and thus the values get even smaller.

• This phenomenon is called vanishing gradients, i.e., gradients
that are nearly zero, which means there are no changes after the
update of biases and weights and learning is very slow (and
sometimes non-existent).

• Similarly, gradients can also explode (be very large) and cause
the network to overstep minima.

125

VANISHING AND EXPLODING GRADIENTS

Things to try:

⇒ Gradient clipping (normalize the gradient vectors to maximal
length) - for exploding gradients

⇒ Choose different activation functions (e.g. ReLU)

⇒ For recurrent problems, other architectures, e.g. Long
Short-Term Memory (LSTMs) networks

126

EARLY STOPPING

• When models are trained too long (with not enough variance in
training data) they might adapt to noise in the training data, that
is, they might overfit

• This can be observed by plotting the changes in error over
training time for both, training and validation set

• ⇒ Stop when the error on the validation set starts to increse

E

EDtrain

EDval

epochs

Figure 52: Overfitting can be prevented by stopping training at the time
indicated by the dashed line

stop when error on validation set gets too small (differentiate
validation and test set)

127

REDUCE NUMBER OF HYPERPARAMETERS

• If the model does overfit, the reason might be, that there are too
many free parameters that have to be fixed.

• In the example, a polynomial with degree k > 2 overfits, while a
quadratic function provides a good fit

• In neural networks the number of parameters can be reduced by
• Removing layers of the network
• Removing nodes from layers of the network

128

WEIGHT REGULARIZATION

• Regularization is a technique to prevent overfitting

• A term that ”regularizes” the weights is added to the loss function

• Squared loss

L(y , ŷ) =
1
2

(y − ŷ)2

• L2-regularized squared loss, with m being the size of the training
data set, λ regularization parameter

L(y , ŷ) =
1
2

(y − ŷ)2 +
λ

2m

∑

w

w2

• In general, a L2-regularized loss function can be written as

L = L0 +
λ

2m

∑

w

w2

with L0 being the unregularized loss function

129

WEIGHT REGULARIZATION

• The regularization term forces the weights to be small.

• λ expresses how much influence the regularization should have
relative to the original loss function.

• Regularization can also improve performance if enough training
data is available. Intuition: With unregularized loss functions the
length of the weight vector is likely to grow. Changes due to
gradients do not change the vector much (since the changes are
added to the old vector, which is large). Thus, the vector more or
less always points in the same direction. This means, that in an
unregularized setting, the weight space can not properly
explored.5

5This fact has not been proven, but it seems reasonable and empirical evidence exists.

130

DROPOUT [9]

• Complex models can learn complex relationships in the data.
• In case there is not enough training data, models learn patterns

in the data that are results of sampling noise (if more data would
be available, there would be more variance and the model could
learn that those relations are actually NOT patterns).

• This leads to overfitting, i.e. adapting to patterns of the training
data, that are not present in the general population or in the test
data.

• One solution would be: train multiple models with different
parameter settings and average their decision. The assumption
is that while some models overfit on noisy patterns others will not
(this is called ensemble learning).

• For deep neural networks, training multiple models is usually not
feasible.

→ Dropout is an approximate solution.

131

DROPOUT [9]

• Dropout prevents overfitting and combines multiple models
efficiently.

• Idea:
• For each training sample temporarily remove a hidden or visible

unit (and all its connections) in the network with probability 1 − p
(e.g. 0.5) during training.

• This means, this training sample is trained on a thinned neural
network that shares weights with the original network.

• The network is trained with back-propagation (stochastic gradient
descent).

• At test time, the whole model is used, but the learned weights are
multiplied by p.

• This approximates averaging over all trained ”thinned” networks.

132

DROPOUT [9]

Figure 53: Droping out nodes during training results in thinned networks
(figure taken from [9])

133

DROPOUT [9]

Figure 54: During testing, the full network is used. The weights for edges are
multiplied by the probability that the node was present during training. (figure
taken from [9])

134

Special Architectures

SPECIAL ARCHITECTURES

Neural Networks differ in

• number and types of neurons

• types and direction of connections

• number of layers

• learning algorithm (aside from Backprop there is also Hebbian
learning for instance)

We review some recent architecture types here. A nice (visual)
overview can be found at
http://www.asimovinstitute.org/neural-network-zoo/.

135

http://www.asimovinstitute.org/neural-network-zoo/

FEEDFORWARD NETWORK (FF)

x y

W1 W2

Figure 55: Simple 2 layer feedforward network

• Feedforward connections from input to output layer
• If there is more than 1 hidden layer, the network is called ”deep”
• Each hidden layer corresponds to a transformation of the

incoming data, i.e., there are many sequential transformations of
the input data.

• Activation function in the hidden layer need to be non-linear
(otherwise the computed function from input to output is also just
linear).

136

RECURRENT NEURAL NETWORK (RNN)

x y

Figure 56: Simple recurrent neural network

• There are cyclic connections in the network.
• Good for modelling sequential data, but very hard to train.
• If hidden connections are recurrent, the network can remember

information (about the input sequence).
• Training is done by unrolling the network over time using the

back-propagation algorithm (back-propagation through time).

137

AUTOENCODERS (AE)

x y = x

Figure 57: Simple autoencoder

• Architecture is similar to feedforward network.
• During training it is required that y = x , i.e., the network is

trained to reproduce the input.
• Tied weights (W2 = W T

1) could be used to reduce the number of
parameters to train.

• The hidden layer then corresponds to compressed
representation of the data.

138

AUTOENCODERS (AE)

Variations

• Sparse Autoencoder
• The number of hidden units is larger than the number of inputs.
• A sparsity constraint is added to the loss function forcing the

network to learn a code dictionary for the data.

• Denoising Autoencoder
• The number of hidden units is smaller than the number of input

units.
• The input to the network is a distorted version of the data x̃ , and

the network is trained to produce x .
• The network learns robust representations of x .

139

LONG SHORT-TERM MEMORY NETWORK (LSTM)

• Are recursive neural networks

• Provide a solution to vanishing gradient problem [5].

• Network contains information outside the normal information flow
in special cells (gated cells).

• From gated cells information can be read / stored / modified
based on the status of gates (output gate / input gate / forget
gate).

• Gates are analog (based on multiplication with sigmoids).

• Gates act based on the strength (input) and the importance
(weight) of the signal.

• Weights on gates are learned (backpropagation through time),
thus, the cell learns when to store, forget or modify its content.

140

LONG SHORT-TERM MEMORY NETWORK (LSTM)

netin

netforg

netout

wout

win

wforg

�

/ �

�

netc

wc

yin

g(netc)

g(netc) · yin

yforg

yout

sc = sc · yforg

+ g(netc) · yin

�

�

h(sc) · yout

h(sc)

output gate

forget gate

input gate

LSTM cell

sc state of memory cell

� input/output squashing

yc

Figure 58: Long short-term memory network

141

EXERCISE

netin

netforg

netout

wout

win

wforg

�

/ �

�

netc

wc

yin

g(netc)

g(netc) · yin

yforg

yout

sc = sc · yforg

+ g(netc) · yin

�

�

h(sc) · yout

h(sc)

output gate

forget gate

input gate

LSTM cell

sc state of memory cell

� input/output squashing

yc

What happens in the LSTM cell for the following configurations:

1. yout = 1, yforg = 1, yin = 0
2. yout = 0, yforg = 0, yin = 1
3. yout = 0, yforg = 1, yin = 1
4. yout = 1, yforg = 1, yin = 1?

1. state of cell is read (output)
2. input is stored
3. input is combined with stored value (cell is modified)
4. input is combined with stored value (cell is modified) and

presented as ouput 142

LONG SHORT-TERM MEMORY NETWORK (LSTM)

Applications

• Machine Translation (learn a sequence from a sequence) [10]

Figure 59: Example of translation result (Source [10])

143

LONG SHORT-TERM MEMORY NETWORK (LSTM)

Applications

• Handwriting Generation [4]

Figure 60: Example of generated handwriting (top example is actual
handwriting) (Source [4]) 144

LONG SHORT-TERM MEMORY NETWORK (LSTM)

Applications

• Image Captioning [11]

Figure 61: Example output (top example is actual handwriting) (Source [11]) 145

GENERATIVE ADVERSARIAL NETWORK (GAN)

Discriminator

Real Data

Generator

Fake Data
Noise

Prediction
(Real/Fake)

Figure 62: Generative Adversarial Network

• Consists of two networks that compete against each other
• The generator network generates data from a random

distribution that looks like real data
• The discriminator network learns to distinguish real and fake
• The better the discriminator gets in distinguishing real from fake

data, the better the generator gets to produce fake data and vice
versa

146

GENERATIVE ADVERSARIAL NETWORK (GAN)

• Generator produces samples x = g(z, θ(g)), with z being the
distribution of the random seeds and θ(g) the parameters of the
generator network

• Discriminator produces a probability p = d(x , θ(d)) indicating that
a sample belongs to the real distribution

• Formulation as zero-sum game, goal is to find Nash equilibrium
• Payoff discriminator v(θ(g), θ(d))

• Payoff generator −v(θ(g), θ(d))

• Learning is trying to maximize payoff (each networks wants to gain
as much as possible), GAN converges to the optimal generator

g∗ = argmin
g

max
d

v(g, d)

147

GENERATIVE ADVERSARIAL NETWORK (GAN)

• Payoff function:

v(θ(g), θ(d)) = Ereal log(p) + Efake(1− log(p))

with real being the real data distribution, fake the generated fake
data distribution and E being the expected value

• v is large if the probability given by the discriminator for real data is
large and for fake data is small (discriminator can distinguish real
and fake)

• v is small if the probability given by the discriminator for fake data is
large and for real data is small (discriminator thinks real is fake and
vice versa)

• At convergence, the discriminator output 1
2 for all samples (either

real of fake)

148

GENERATIVE ADVERSARIAL NETWORK (GAN)

Examples

• Predicting the next frame in a video. Left: actual frame of the
video, center: model predicting based on mean squared error
using the current frame, right: additional GAN that is forced to
produce realistic images (cf. ears)

Figure 63: Predicting next frame in a video (Source [2]) 149

GENERATIVE ADVERSARIAL NETWORK (GAN)

Examples

• Generating realistic superresolution images from example
images in small resolution

Figure 64: Generating realistic images (Source [2])

150

GENERATIVE ADVERSARIAL NETWORK (GAN)

Examples

• Impainting of images (fixing holes realistically)

Figure 65: Image impainting (right GAN) (Source [12]) 151

SELF-ORGANISING MAPS (SOMS)

• Unsupervised learning, the network tries to learn pattern from
the data (without a ground-truth)

• Can be used for dimensionality reduction

• Learning algorithm different, no error optimization based on
gradients but competitive learning

• when the network is presented with a data sample, all output
neurons compete agains each other

• the winning neuron’s weights get updated, such that it would
produce a stronger response to the same data sample next time

• the winning neuron’s neighbours also get updated similarly, but to a
lower extent

• Self-organizing maps resemble some properties of how learning
is done in the brain (and was used to study this)

152

SELF-ORGANISING MAPS (SOMS)

…

vj

wj

input grid of nodes

Figure 66: General architecture of a SOM

• output nodes are arranged in a grid, each node has a
neighbourhood defined

• all input nodes are fully connected to output nodes 153

SELF-ORGANISING MAPS (SOMS)

…

vj

wj

input grid of nodes

Figure 67: General architecture of a SOM

Notation:

• input data xk
i ∈ Rm is the k -th data point

• vj is the j-th output node
• wj are the weights associated with node vj

154

SELF-ORGANISING MAPS (SOMS)

General Idea of Learning in SOMs

1. Initialize all weights randomly (Initialization)

2. Determine the neuron that is most similar to the current input
vector (according to some similarity measure), this is the winning
neuron (Competition)

3. Determine the neighborhood of the winning neuron
(Cooperation)

4. Make the weights of the winning neuron and – to a lesser extent
– its neighbours more similar to the current input, such that it will
get even more activated when seeing the same data point again
(Update)

155

SELF-ORGANISING MAPS (SOMS)

Competition

• A similarity function defines how similar the input vector is to
each node

• For instance, the Euclidean distance can be used

d(xi , vj) =
m∑

k=1

(xk
i − wkj)

2

with xk
i being the k -th coordinate of sample i

• The winning neuron v∗ is the one with the lowest Euclidean
distance to xi

v∗ = argminj (d(xi , vj))

156

SELF-ORGANISING MAPS (SOMS)

Cooperation

• A neighborhood function Nv∗u defines the influence of the update
on the neighbors u of the winning node v∗

• Simple choices are the Moore or von-Neumann neighborhoods,
Nv∗u = 1 for all neighbors of v∗ and Nv∗u = 0 for all other nodes

• Other choice is Gaussian neihborhood

Nv∗u = e
−sv∗,u

2σ2

with σ being the variance and sv∗,u the grid distance between
nodes u and v∗

• The neighborhood should get smaller over time, thus the
neihborhood function is a function of time; for Gaussian σ can be
made to decrease over time

157

SELF-ORGANISING MAPS (SOMS)

Update

• Using a neighborhood, the network only learns locally

• Update rule

∆wij = η(t) · Nv∗u(t) · (xi − wj)

• The learning rate η(t) decreases over time

• The neighborhood function Nv∗u(t) depends on time, becoming
more local

• The term (xi − wj) arises from the derivative of the distance
function (we wanted to minimize the distance between input and
a node, which is represented by its weights)

158

SELF-ORGANISING MAPS (SOMS)

Example

v1

v4

v3

v2

w1

x1

x2

x3

x4

x5

x6

• Six data points xi in 2-dimensional space
• SOM with four nodes vj

• Input to SOM are coordinates of data points

159

SELF-ORGANISING MAPS (SOMS)

Example

v1

v4

v3

v2

w1

v1

v4

v3

v2

x1

x2

x3

x4

x5

x6

• After initialization of weights
• Each node vj can be represented in feature space using its

weights wj

160

SELF-ORGANISING MAPS (SOMS)

Example

v1

v4

v3

v2

w1

v1

v4

v3

x1

x2

x3

x4

x5

x6

v2

• Input of x1

• Wining neuron is v2

• v2’s weights w2 get updated, v2 moves closer to x1 (for simplicity
update of neighborhood is ignored)

161

SELF-ORGANISING MAPS (SOMS)

Example

v1

v4

v3

v2

w1

v1

v4

v3

x1

x2

x3

x4

x5

x6

v2

• Input of x2

• Wining neuron is v2

• v2’s weights w2 get updated, v2 moves closer to x2 (for simplicity
update of neighborhood is ignored)

162

SELF-ORGANISING MAPS (SOMS)

Example

v1

v4

v3

v2

w1

v1

v4

v3

x1

x2

x3

x4

x5

x6

v2

• Input of x3

• Wining neuron is v1

• v1’s weights w1 get updated, v1 moves closer to x3 (for simplicity
update of neighborhood is ignored)

163

SELF-ORGANISING MAPS (SOMS)

• The data distribution’s shape (grey dots) is well approximated by
a SOM (red dots)

• For dimensionality reduction each data point can be represented
by its nearest SOM node (the winner)

Figure 68: Dimensionality reduction with SOMs (CC-SA 3.0, Agor153, via Wikimedia
Commons)

164

Summary

SUMMARY

• Neural Networks with many hidden layers (Deep Neural
Networks) trained on a lot of training data are capable of
achieving near human performance on certain tasks (e.g. object
recognition).

• Backpropagation is the de-facto standard training algorithm,
implementing a gradient descent on the error surface.

• Neural networks differ in
• their architecture (types of neurons, number of layers, structure of

connections)
• the number of hyperparameters
• training method (algorithm, training parameters, data set)

165

SUMMARY

Important Concepts

• Neuron

• Supervised, unsupervised, semisupervised learning

• Parameters, hyperparameters

• Perceptron

• Back-Propagation

• Feedforward and Recurrent Neural Networks and derivations

166

ACKNOWLEDGEMENT

• Some slides (perceptron training) are adapted from the course
on Machine Learning and Data Mining at the Bauhaus University
Weimar (Prof. Dr. Benno Stein).

• Overview:
webis.de/lecturenotes/overview/overview.html

• Slides: webis.de/lecturenotes/slides/slides.html

167

 webis.de/lecturenotes/overview/overview.html
webis.de/lecturenotes/slides/slides.html

FURTHER READINGS

• Machine Learning (general ML introductory book)
Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997. ISBN: 0070428077, 9780070428072

• Deep Learning
Chapter available online http://www.deeplearningbook.org

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016

• Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/

168

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/

REFERENCES I

References

[1] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. “A Neural Algorithm of Artistic
Style”. In: CoRR abs/1508.06576 (2015). URL: http://arxiv.org/abs/1508.06576.

[2] Ian J. Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. In: CoRR
abs/1701.00160 (2017). arXiv: 1701.00160. URL:
http://arxiv.org/abs/1701.00160.

[3] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[4] Alex Graves. “Generating Sequences With Recurrent Neural Networks”. In: CoRR
abs/1308.0850 (2013). URL: http://arxiv.org/abs/1308.0850.

[5] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Comput. 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI:
10.1162/neco.1997.9.8.1735. URL:
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

169

http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://www.deeplearningbook.org
http://arxiv.org/abs/1308.0850
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

REFERENCES II

[6] Sergey Levine et al. “Learning Hand-Eye Coordination for Robotic Grasping with Deep
Learning and Large-Scale Data Collection”. In: CoRR abs/1603.02199 (2016). URL:
http://arxiv.org/abs/1603.02199.

[7] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-Hill, Inc.,
1997. ISBN: 0070428077, 9780070428072.

[8] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and Tree
Search”. In: Nature 529.7587 (Jan. 2016), pp. 484–489. DOI: 10.1038/nature16961.

[9] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958. URL:
http://jmlr.org/papers/v15/srivastava14a.html.

[10] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with
Neural Networks”. In: CoRR abs/1409.3215 (2014). arXiv: 1409.3215. URL:
http://arxiv.org/abs/1409.3215.

[11] Oriol Vinyals et al. “Show and Tell: A Neural Image Caption Generator”. In: CoRR
abs/1411.4555 (2014). arXiv: 1411.4555. URL: http://arxiv.org/abs/1411.4555.

[12] Raymond A. Yeh et al. “Semantic Image Inpainting with Perceptual and Contextual
Losses”. In: CoRR abs/1607.07539 (2016). arXiv: 1607.07539. URL:
http://arxiv.org/abs/1607.07539.

170

http://arxiv.org/abs/1603.02199
https://doi.org/10.1038/nature16961
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1607.07539
http://arxiv.org/abs/1607.07539

REFERENCES III

[13] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional
Networks”. In: Computer Vision – ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part I. Ed. by David Fleet et al. Cham:
Springer International Publishing, 2014, pp. 818–833. ISBN: 978-3-319-10590-1. DOI:
10.1007/978-3-319-10590-1_53. URL:
https://doi.org/10.1007/978-3-319-10590-1_53.

171

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Introduction
	Biological Neural Networks
	Perceptron
	Machine Learning Basics
	Gradient Descent
	Types of Neurons
	Back-Propagation
	Training Heuristics
	Special Architectures
	Summary

