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Introduction



INTRODUCTION

Neural networks learn understand the world [13]

outdoors

sky

administration

tourism

castle

daylight

museum

urban

water

tourist

‘town

Figure 1: Scene Understanding (Generated with https: //www.clarifai
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INTRODUCTION

Neural networks writing by hand [4]

e Recurrent neural networks can be used to generated sequences,
models can also include memory (Long short-term memory
networks, LSTM)

e Network trained on corpus from 221 writers, learnt to produce
new text in their handwriting
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Figure 2: Three handwritten samples for the same text (generated with
http://www.cs.toronto.edu/~graves/handwriting.html)


http://www.cs.toronto.edu/~graves/handwriting.html

INTRODUCTION

Neural networks as artists [1]
e Deep neural network (Convolutional Neural Network) trained on
artistic images
e Network learnt to separate image content from image style
e Given a new image it can apply any (learnt) artistic style
e Demo available at https://deepart.io/


https://deepart.io/
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Figure 3: Input image (left) plus style



INTRODUCTION

Figure 4: DeepArt.io Result 6



INTRODUCTION

Figure 5: Input image (left) plus style (right)



INTRODUCTION

Figure 6: DeepArt.io Result




INTRODUCTION

Neural networks as strategy game players [8]

e Chinese game Go has 1070
board configurations (more
than atoms in the universe,
much more complex than
chess)

e Artificial intelligence AlphaGo
uses deep neural networks

e In October 2015 AlphaGo i %—
won against the European Go o © o
Master Fan Hui (using 1,202 ' |
CPUs and 176 GPUs) Figure 7: First 99 turn in

e Webpage tournament (Public Domain, via
Wikimedia Commons)

https://deepmind.com/
research/alphago/


https://deepmind.com/research/alphago/
https://deepmind.com/research/alphago/

INTRODUCTION

Neural networks control robot movements [6]

e Including convolutional neural networks in robot control loops
improves movement

Figure 8: Robot grasping office objects (Full video available
https://www.youtube.com/watch?v=H4V6NZLNu-c (1:50 min))



https://www.youtube.com/watch?v=H4V6NZLNu-c

HISTORY

e 1940s-1960s: Cybernetics
e Theories about how the brain learns
e Warren Sturgis McCulloch, Walter Pitts, Donald Olding Hebb
(Hebbian learning), Frank Rosenblatt (perceptron)
e Simple linear models, failed to solve easy task (XOR)
e 1980s—-1990s: Connectionism
e David Rummelhart (backpropagation algorithm)
e Multi-layer networks
e Outperformed by other methods and hard to train
e 2006 —now: Deep Learning
o Networks with many layers (deep) achieving near human
performance on some tasks
e Depend on huge data sets (Big Data) and require great processing
power (mostly GPUs are used)
e Geoffrey Hinton, Yoshua Bengio, Yann LeCunn (Canadian Institute
for Advanced Research)



HISTORY
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Figure 9: Phrases occurring in English books over time. No books on "deep
learning” or "deep neural networks” in the books of the corpus. (generated with
Google n-grams viewer https://books.google.com/ngrams/), data set ids 20120701 and
20090715


https://books.google.com/ngrams/

HISTORY

e Size of data sets increased dramatically over the years
e Some examples:

Data Set Year Number of ltems
Iris Flower 1936 150
Cars 1990 1,728
MNIST Digits 1998 70,000
CIFAR10 2009 60,000
ImageNet 2009 14,197,122
Google News Texts 2013 3,000,000

e Deep Learning is only successful with Big Data (because deep
networks have many parameters that need to be “fixed”)

e Rule-of-thumb in 2016: supervised deep learning can do well
with 5,000 items per category, can achieve near-human
performance with 10,000,000 examples.
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THE HUMAN NERVOUS SYSTEM

Life of multicellular organisms is steered by the nervous system

The nervous system receives input from the environment (sensor
signals) and creates output
Sensor input examples
e Smell
e Vision
e Audio signals
Output

e Behavior
e Thoughts
¢ Movements



THE HUMAN NERVOUS SYSTEM

The human nervous system consists of two main parts

e Central nervous
system (CNS)
e Brain and spinal
cord
e Control center

e Peripheral nervous
system (PNS)
e Cranial and spinal
nerves
e Communication
lines between body
and CNS

Central Nervous System

Brain

Spinal cord

Peripheral Nervous System

Ganglion

Nerve

Figure 10: Human nervous system (CC-SA
4.0, OpenStax, via Wikimedia Commons)



THE HUMAN NERVOUS SYSTEM
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Human Nervous System (CC-SA 3.0, theEmirr, via Wikimedia Commons)



THE HUMAN BRAIN

Some statistics:

Weight 1.3 kg

Volume 1200 cm®

Number of neurons 86 billion

Length of nerve fibres 5,8 million km

Main Areas Cerebral cortex (GroBhirn), Dien-
cephalon (Zwischenhirn), Cerebellum
(Kleinhirn), Brainstem




THE HUMAN BRAIN

Primary sensory cortex Primary motor cortex
(postcentral gyrus) (precentral gyrus)

Somatic motor
association area

- / (premotor cortex)

Prefrontal
Visual

- i X cortex
association y \ / ’ :
area }( 3 J :

Somatic sensory
association area

Broca's area
(production of
speech)

Visual cortex Auditory association area
Wernicke's area

(understand speech) Auditory cortex

Figure 12: Functional areas (CC-BY 3.0, Blausen.com staff (2014). "Medical gallery of
Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010)



Anatomy

e cells responsible for transmitting nerve impulses
e 3 types of neurons (sensory, motor and interneurons)

Dendrite
Axon erminal

Node of

Node of g
Cellbody o\S"

Schwann cell

Myelin sheath
Nucleus

Figure 13: Anatomy of a neuron (CC-SA 3.0, Dhp1080 via Wikimedia Commons)



Anatomy

e Dendrite: nerve endings for incoming signals, generally shorter
than axons

e Axon: nerve ending for outgoing signal, can be upto 1 min
length; combination of Myelin sheath, Schwann cells and nodes
of Ranvier support fast signal transmission across the length of
the axon (the action potential “jumps” from node to node)

e Cell Body: sums up the incoming signals and generates an
outgoing signal if the aggregated incoming signal is above a
certain threshold

e Synapse: Connection at the terminal end of axons or dentrites,
transmits the signal from one neuron to another

20



Synapses

Axosecretory Axoaxonic Axodendritic __Axoextracellular Axosomatic

Axon terminal Axen terminal Axon terminal Axon with na Axon terminal

secreles directly secretes into ends on a dendrite connection ends on soma

into bloodstream another axon spine seccretes into Axusynaplic
extracellular fluid Axon terminal

ends on another
axon terminal

Figure 14: Types of synapses (CC-BY 3.0, Blausen.com staff (2014). "Medical gallery of
Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010)
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Signal Transmission

1. If a neuron gets excited it generates an electrical action potential
in the cell body.

2. At a synaptic junction there is the synaptic cleft between the
releasing and the receiving neuron.

3. The electrical signal is translated into a chemical signal. The
synapse releases chemicals, so called neurotransmitters.

4. The neurotransmitters cross the synapic cleft and enter the
receiving neuron through receptors.

5. The chemical signal is translated back to a electrical signal in the
receiving neuron.

6. Neurotransmitters are transported back to the releasing neuron
or degraded.

Explanatory video https://en.wikipedia.org/wiki/File:
Neuron_action_potential.webm (10:00 min)
22


https://en.wikipedia.org/wiki/File:Neuron_action_potential.webm
https://en.wikipedia.org/wiki/File:Neuron_action_potential.webm

Post-Synaptic Signals

e An action potential is generated if the incoming signals are above
a certain threshold.

30mv
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-15mv -10mv ES

A
4/\ A
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Figure 15: Incoming activation does not (left) and does create an action
potential (right) (CC-SA 3.0, Dake via Wikimedia Commons)
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Synaptic plasticity

e Synaptic strength (the strength of the signal transmitted over an
active synapse) can vary over time.

e Changes in synaptic strength are the basis of learning and
memory.

e Strength of the synapse can be altered by changing the number
of released neurotransmitters, and the sensitivity of the receiving
cell to those neurotransmitters.

24



Model of a neuron

O\ cell body

Figure 16: Schematic model of a neuron
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Model of a network of neurons
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Figure 17: Schematic model of a network of neurons 2



THE HUMAN BRAIN

Human Brain Supercomputer 2011
Data Storage 3.5 quadrillion bytes 30 quadrillion bytes
Processing Speed 2.2 billion megaflops 8.2 billion megaflops
Power Consumption 20 watts 9.9 million watts
Storage Method associative address-based
Parallelisation massively parallel (mostly) serial

Notes:
e Numbers based on https://www.scientificamerican.com/
article/computers-vs—-brains/
e quadrillion 10", billion 10°
e Ted Talk "What is so special about our brain?”
https://www.youtube.com/watch?v=_7_XH1CBzGw (13:31 min)
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Perceptron



PERCEPTRON

The perceptron is the simplest neural network, with only one node
that does computations.

Figure 18: Perceptron

x = (x1,...,X,)" is the input vector

o w=(w,...,w,)" is the weight vector of the incoming edges
b is a bias term

y € {0,1} is the output

28



PERCEPTRON

The perceptron does the following computations
e First, it calculates the weighted sum s of the inputs
n
S = Z Wi X; + b
i=1
e [f this sum is greater than zero, it outputs 1, otherwise 0

y = h(s) with h being the heaviside function

Figure 19: Heaviside function (Public Domain, via Wikimedia Commons)
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EXERCISE

Calculate the output of the perceptron for the following input vectors:
x' =(0,0,0)7, x2 = (-0.5,-1,1)"

30



PERCEPTRON

e Computation of perceptron

n
y = h(>_ wix; + b)

i=1

e Which is equivalent to

y =h(wx + b)
Note:
e Sometimes the bias b is included in the weight vector as follows: The
input vector is extended to x = (xo, X1, ..., Xn)” with xo = 1. The weight
vector is then w = (wo, wi, ..., w,)" with wo = b.

e This notation is equivalent and leads to a mathematically more compact
notation. However, in terms of computation leaving out the bias is more
efficient (in the future this means, less effort in terms of matrix
multiplication).

31



EXERCISE

Calculate w'x with w = (0.4,0.5,-0.7)", x = (-0.5,-1,1)"
wix=-14

32



PERCEPTRON — EXAMPLE

e Perceptron with 2 binary input units.

00/2'qu '

e Represents the following function (logical AND)

X1 X2 S y
0O 0 -04 O
0 1 -02 O
1 0 -01 O
1 1 01 1

33



PERCEPTRON — LIMITATIONS

The computation function of a perceptron

y = h(w'x + b)

corresponds to a hyperplane in n-dimensional space

0=w'x+b=wixs + woxz + ...+ b= 0is the equation for a
hyperplane (e.g. 2x; + 3x2 = 0 in R?)

Thus, a perceptron can learn to represent any hyperplane (by
adapting the weights w).

The perceptron is a linear classifier.

34



PERCEPTRON — LIMITATIONS

e The perceptron is a linear classifier and can learn to separate
linearly separable data.

T T

Figure 20: Linearly separable data (left) and inseparable data (right)
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PERCEPTRON — LIMITATIONS

A perceptron can learn the logical functions AND, OR, NAND,
NOR; but not XOR.

Any logical function can be represented as a combination of
AND, OR, NOT or NAND, or NOR.

e This means, any Boolean function can be learned by a neural
network with at least 2 layers’

This gives rise to the idea of using multi-layer neural networks for
learning complex functions.

"Because every Boolean function can be represented in disjunctive normal form.

36



PERCEPTRON — TRAINING

Definition (Perceptron Training Rule)
For a given training example (x, y) the perceptron adapts its weights
based on the following training rule:

error = y — h(w'x)
Aw; =1 - error - X;
Wi < W + Aw;
with x; being the j-th entry in the input feature vector w; the weight of

the j-th edge and 7 the learning rate.
In matrix form:

W — W+ 7(y — h(w'x + b))x

37



PERCEPTRON — TRAINING

Algorithm:  PT  Perceptron Training

Input: D  Training examples of the form (x, y), y € {0,1}.
n Learning rate, a small positive constant.

Output: w  Weight vector.

PT(D,n)

1. initialize_-random_weights(w), t =10
2. REPEAT

3 t=1t+1

4 (x, y) = random_select(D)

5. error=y— h(w'x +b)

6. FOR j=0 TO p DO

7 Aw; = n - error - X;

8. w=w+Aw

9 ENDDO

10. UNTIL(convergence() OR t > tmax)
11. return(w)

38



PERCEPTRON — TRAINING

T
X, T T T X,

Definition of an (affine) hyperplane: n"x = d.

e n denotes a normal vector that is perpendicular to the
hyperplane.

e If ||n|| = 1 then |d| corresponds to the distance of the origin to
the hyperplane.

e Ifn"x < d and d > 0 then x and the origin lie on the same side

of the hyperplane. "



PERCEPTRON — TRAINING

Ay

n
Definition of an (affine) hyperplane: w/x+b=0 < Z Wjx; = —b.
j=1

40



PERCEPTRON — TRAINING

e A perceptron defines a hyperplane that is perpendicular

(= normal) to (wy, ..., wy)T.

e —b specify the offset of the hyperplane from the origin, along
(wy,...,w,)".

e The set of possible weight vectors w = (wy, wy, ..., w,)T form the

hypothesis space H (that is everything the perceptron can learn).

e Weight adaptation means learning, and the shown learning
paradigm is supervised.

41



PERCEPTRON — TRAINING

e The error for one training sample can either be 0, 1 or -1.

y h(w'x+b) error
0 0 0
0 1 -1
1 0 1
1 1 0

e The computation of the weight difference Aw; in Line 7 of the
perceptron training algorithm (slide 38) considers a feature
vector X component-wise. In particular, if some x; is zero, Aw;

will be zero as well.

42



PERCEPTRON — TRAINING

e Weight update for example that is classified as 0, but should be

1.

e The hyperplane is rotated towards the example.

y=1
h(wTz) =0

w=w+ax

= (")

Figure 21: Perceptron weight update schema, case 1
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PERCEPTRON — TRAINING

e Weight update for example that is classified as 1, but should be
0.
e The hyperplane is rotated away from the example.

y=0
h(wTz) =1

H" =w -

Figure 22: Perceptron weight update schema, case 2
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PERCEPTRON — TRAINING

Example

e Example images are presented to the perceptron.
e The perceptron has to decide whether the image contains the
letter A or B.

A
A AO
k& -

Figure 23: Simple classification task

~
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PERCEPTRON — TRAINING

e The encoding of the examples is based on features: number of
line crossings, most acute angle, longest line, etc.

e The class label, y, is encoded as a number. Examples from A
are labeled with 1, examples from B are labeled with 0.

X1, Xk
X1, Xk
X1, Xk

Class A ~ y =1

X/1 Xm1
Xl Xm,
Xl Xmy,

Class B ~ y=0

46



PERCEPTRON — TRAINING

e Initial configuration of items in feature space (projected to 2D)

Figure 24: Feature space
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PERCEPTRON — TRAINING

Figure 25: Feature space

48



PERCEPTRON — TRAINING

Figure 26: Feature space

e Initial (random) hyperplane
49



PERCEPTRON — TRAINING

Figure 27: Feature space

e ltem is classified as 0 (B), but should be 1 (A)
50



PERCEPTRON — TRAINING

Figure 28: Feature space

e ltem is classified as 0 (B), but should be 1 (A) (it lies not in the

direction of the normal vector) o1



PERCEPTRON — TRAINING

Figure 29: Feature space

e Hyperplane is rotated towards the example (dashed: before
weight update, solid line: after weight update) 52



PERCEPTRON — TRAINING

Figure 30: Feature space

e Classifier after training one example
53



PERCEPTRON — TRAINING

Figure 31: Feature space

e Next weight udpate
54



PERCEPTRON — TRAINING

Figure 32: Feature space

e Classifier after two training examples
55



PERCEPTRON — TRAINING

Figure 33: Feature space

e Next weight update leads to zero errors
56



PERCEPTRON CONVERGENCE THEOREM

Theorem (Perceptron Convergence)

Let Xy and X; be two finite sets with vectors of the form
X=(x1,...,X)", let X; N Xo = 0, and let W define a separating
hyperplane with respect to Xy and Xi. Moreover, let D be a set of

examples of the form (x,0), x € Xp and (x, 1), x € Xy. Then the
following holds:

If the examples in D are processed with the perceptron training
algorithm (cf. slide 38) the underlying weight vector w will converge
within a finite number of iterations.

o If a separating hyperplane exists, i.e., the data is linearly
separable, the perceptron training algorithm converges.

57



PERCEPTRON CONVERGENCE THEOREM

e The perceptron algorithm will not converge if a separating
hyperplane does not exist.

®
o3 ®

®

®®

®

Figure 34: Linearly separable data left vs. linearly not separable data (right). e



Machine Learning Basics




MACHINE LEARNING

Definition (Machine Learning)
A computer program is said to learn

e from experience
e with respect to some class of tasks and

e a performance measure,

if its performance at the tasks improves with the experience [7].
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MACHINE LEARNING

Examples:

e Robot navigation

e Task: navigate its way

e Performance measures: Length of the route / number of times the
robot reached its goal (without the battery being empty before /
number of accidents (wall bumps) / ..

e Experience: navigations through training mazes

e Credit card fraud detection

e Task: recognize fraudulent transactions

e Performance measures: number of fraudulent transactions
recognized / number of transactions correctly recognized / money
saved

e Experience: history of transactions with annotation whether they
were fraudulent or not

60



MACHINE LEARNING PARADIGMS

Three basic types of machine learning algorithms, dependent on the
type of feedback (experience) the learner receives.

e Supervised Learning
Learner receives the desired output for an input from a "teacher”.
e Unsupervised Learning
Learner only has the input data and aims to detect patterns in
this data.
¢ Reinforcement Learning
Learner takes action in an environment and receives a reward.
Reward might come only at the end of a very long sequence of

actions and might also be very simple, such as +1 (success) and
-1 (failure).

A machine learning system may also use combinations of paradigms
(e.g. semi-supervised learning).
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MACHINE LEARNING PARADIGMS

Examples:

e Supervised Learning

e Optical character recognition

e Credit card fraud detection

e Object recognition (ReCaptchas are used for getting training data)
e Unsupervised Learning

e Anomaly detection
e Customer segmentation (special case of clustering)

¢ Reinforcement Learning

e Robot navigation
o Robot walk
e Chess

62



SUPERVISED MACHINE LEARNING

Supervised learning is further distinguished depending on the type of
output variable.

e Classification
The output of the learner (and the desired output presented by
the teacher) is a set of categories.
E.g. recognize hand-written digits. Categories are 0,1,...,9.
e Regression The output of the learner is a real-valued number.
E.g. predict the prize of a house.
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TAXONOMY OF MACHINE LEARNING

Machine Learning

type of feedback

/V\

Supervised | Unsupervised | | Reinforcement |

type of output

v\

Classification | Regression |

number and structure of classes

v

| single-label | | multi-label |
| flat | | hierarchical |
| unary | | binary | | multi-class |

Figure 35: Taxonomy of machine learning algorithms (simplified) 64



NOTATION FOR SUPERVISED LEARNING

Notation

e 1, — input feature vector size

e n, — output size (number of classes)

e X =(Xy,...,Xp,)—input vector

e y —desired output (target)

e j — predicted output (what the learner produces)

o (x(, y(M) —training item (first example from the training data)
e m— number of examples in the data set

e X € R™*M —input matrix (each item is a column, each feature is
a row)
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NOTATION FOR SUPERVISED LEARNING

Example hand-written digit classification®

e N, = 64 (8x8 pixels)

T\ e ny, = 10 (numbers from O to 9)
’{ } o X(1) fr—
(0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,...)7
f\"\ e (each pixel is either not-filled — 0 or filled
— 1. Rows of the image are concatenated
to form the feature vector)
Figure 36: Example o yi) =2
hand-written digit o X — (x(‘), x@ . ,X(m))
e xn
X=|: :
Xy, X

2Note, that many more feature representations are possible -



CLASSIFICATION PIPELINE

Generate
Classifier

\ 4

Evaluate Jes Apply
Classifier ’ Classifier

no

Figure 37:

Classification Pipeline (simplified)

e A classifier is trained on the training data set Dy.,j, and then
evaluated on the test data set Diqg;.

o If the performance is satisfactory, the classifier is applied to the
unlabeled data from the application D,. If not, the classifier has
to be retrained (e.g. with more training data, with different
parameters, or a different classifier).
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DATA SETS

The classifier has to be evaluated on a different data set than has
been used for training. Otherwise the classifier can “just remember
the training data” and can not be assured to generalize to unseen
data. That means Dy.jn # Diest, optimally Dyain N Diest = (0.

Assumption for learning:

e The data samples in Dy, Diest and D, stem from the same
population, i.e., have similar statistical properties.

e Counter-example: A classifier for hand-written digit recognition
was trained on handwriting from school children and is applied to
handwritings from adults.
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CLASSIFIER EVALUATION

Definition (Classification Error)
The classification error on a data set D is defined as follows:

E(D) = —|{1 <i<m:y®# )0}
with ¥ being the predictions of the classifier.
e Classification error counts how many predictions are wrong. The

error is then the rate of wrong predictions.
e Classification Accuracy A =1 — Err.
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CLASSIFIER EVALUATION

Definition (Loss Function)
A loss function defines the "loss of quality” given a prediction and
the desired output: £(y, ). Common loss functions are

e Squared loss L(y,§) = 3(y — §)?

0-1loss L(y,y) = Z(y # y) with Z being an indicator function.

The prediction error is the loss aggregated over the data set:

m

1 o
E=—> ("5
i=1

Classification error is the aggregation of the 0-1 loss.

Summed Squared Error (SSE) is the aggregation of the squared
loss.
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CLASSIFIER EVALUATION

Examples:

e Consider a data set on object recognition. In the data set are 20
objects, 10 images for each object. Total 200 images. The
classifier correctly classifies 190 of them. The classification error
is 0.05 (5%).

e Consider a data set on cancer detection. The data set contains
100 samples. 95% of all samples are labeled "no cancer” only
5% are labeled "cancer”. A classifier that assigns all samples to
"no-cancer” has a classification error of 5%.
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CLASSIFIER EVALUATION

Classification error is not always the best evaluation measure,
especially for problems with strong non-uniform class distributions
(see cancer example). At least, the error has to be compared to
naive baselines (trivial acceptor, trivial rejector, random classifier).

e Many more evaluation measures exist (true positive rate,
precision, recall, sensitivity, classification cost,..)3.

SThose are not part of this lecture
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CLASSIFIER EVALUATION

Holdout Estimation
e Labeled data set is randomly split into train and test data set.
Classifier is trained on Dy, and evaluated on Dyeg;.
e Common split ratios are 60-40 and 70-30.
e We get two error estimations Errp,,,, and Errp,,,.

Dtrain

Dtest

Figure 38: Train-test splits for holdout-error-estimation
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CLASSIFIER EVALUATION

Cross-Validation

e Labeled data set is randomly split into k disjoint subsets.
Classifier is trained k times on respective D{,a,n and evaluated on
respective D{est. k is usually either 3, 5 or 10.

e We get 2k error estimations Eerﬁram and Err%si.

e Cross-validation error is then

1k
Errg, = 7 Z Erry
j=1

test

3 splits fold 1 fold 2 fold 3
Dtrain Drest
Dirain
Dyest
Dy
Diest Dirain e

Figure 39: Train-test splits for cross-validation 74



CLASSIFIER EVALUATION

e Cross-validation is computationally more expensive (classifier
has to be trained k times) but provides the more realistic error
estimation.

e Cross-validation only reasonably applicable to small data sets.

e Leave-on-out estimation is cross-validation with the test set
containing exactly 1 data sample.

e When splitting the data set into subsets it has to be ensured that
training an test sets retain the same properties (underlying
distribution). Mostly, random splits is a reasonably good choice.
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CLASSIFIER EVALUATION

Learning curves

e Plot the error on the train and test split for different sizes of the
training data set.

e The training error gets worse with more training data, because
the classifier has to include more (and different) data points into
its model.

e The test error (the error on unseen samples) gets better,
because the classifier has been able to learn from more data.

E
w

EDiroin

m(training set size)

Figure 40: Sample learning curve 76



CLASSIFIER EVALUATION

Bias vs. Variance

e Bias and variance are two common problems in machine learning

e Errors based on bias are errors stemming from wrong
assumptions about the problem
E.g. fitting a straight line to data point lying on a curve

e Errors based on variance stem from (unimportant) variances in
the training data set to which the classifier adapts to.
E.g. fitting a higher-order polynomial to a data set which samples
lie on a quadratic curve
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CLASSIFIER EVALUATION

Bias vs. Variance

e Bias and variance for data points sampled from quadratic

function
e Green curve is the current predictor (hypothesis)

T2 To
X H "
X X ypothesis
/_/x/;//
X X

Hypothesis

x

Figure 41: High bias (left) and high variance for which the classifier adapts to

an outlier (right)
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CLASSIFIER EVALUATION

High Bias — Underfitting

E

Ep

train

m(training set size)

Figure 42: Learning curve indicating high bias)

e Error on train and test set are both high
e More training data does not improve the model
= choose a more complex model (e.g. more layers in the neural
network)
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CLASSIFIER EVALUATION

High Variance — Overfitting

E

EDrain

m(training set size)

Figure 43: Learning curve indicating high variance)

e Error on train set is low, error on test set is high
e Classifier is well adapted to training data, but can not generalize

to unseen data
= choose a simpler model (e.g. less layers in the neural network)

or get more training data 80



CLASSIFIER EVALUATION

e Error on training and test set should be similar (it means that the
classifier generalizes well).

e Error on both, Dy.j, and Dy should be small (this means the
model does not suffer from high bias).

Figure 44: Learning curve indicating high bias (left), high variance (center),
good fit (right)
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MACHINE LEARNING BASICS — SUMMARY

Learning systems adapt to experiences.

In case of supervised learning, experiences are data samples
together with the "truth” given by a "teacher”.

A learning algorithm needs to know what to optimize for, thus we
define a loss function and an error (which we want to minimize).

Learning the model and evaluating its performance needs to be
done on different data (sub-)sets.

Plotting of learning curves helps to find common problems in
machine learning, namely bias and variance.
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MACHINE LEARNING BASICS — SUMMARY

Supervised, unsupervised learning; reinforcement learning
Cross-validation

Learning Curve

Loss function, classification error

Train and test data set
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Gradient Descent




GRADIENT DESCENT

e Perceptron training rule learns a separating hyperplane if the
data is linearly separable®.

w < w+n(y — h(wx))x

o If data is not linearly separable the perceptron might fail to
converge.
= The delta rule for training perceptrons finds a best-fit
approximation for the hyperplane if the data is not linearly

separable.
4We use the notation from slide 65 here. Note that x is a vector, while y is a scalar. 84




GRADIENT DESCENT

Delta Rule and Gradient Descent

e The key idea behind the delta rule is gradient descent.

e Gradient descent is the basis for learning algorithms for
multi-layered networks.
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GRADIENT DESCENT

e Consider an untresholded perceptron, i.e., a perceptron that only
takes the weighted sum of the inputs.

e The function o the perceptron applies to a data point is then
o(x)=w'x

e Consider a measure of the training error (see slide 70) for a
specific perceptron which is specified by its weights w

Z (v — o Z —wxM)2 (1)

e The error is then the squared difference between the intended
output and the actual output summed over the training data

N \
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GRADIENT DESCENT

e Error in weight space is a convex function of the weights
e The optimal solution (weights that result in the smallest error) is

at the bottom of the "bow!”

error

Figure 45: Convex error surface in weight space 87



GRADIENT DESCENT

Intuition

e The x-y plane spans all possible
solutions (the hypothesis space).

e Start with any solution.

e Follow the direction of the steepest
descent of the error surface to get new
weights.

e Evaluate the new solution and again,
follow the direction of steepest descent.

e Start with large steps towards the
bottom and then make smaller steps so
as not to overshoot the target.

e The direction of steepest descent is
characterized by the gradient of the
function at a particular point w. 88



GRADIENT DESCENT

e Direction of steepest ascent characterized by the gradient.

0OE OE 0E

P B aTnx]

e In weight space VE(w) is a vector pointing towards the direction
of steepest ascent from a starting point w.

e Weight update is as follows:

VE(w) = |

W< w+ Aw Aw = —nVE(w)

e The minus sign ensures that we walk into the direction of steepest
descent (towards the minimum).
e 7 is the learning rate, determining the size of the step
e Formula can also be written component-wise

E
Wi < W + Aw; AW,':—ngW
I
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GRADIENT DESCENT

Derivation of the gradient for perceptron training error of formula 1

0OE 0 1<
_ L (k) _ wT x(k)y2 //sum rule
ow,  ow; 2 ;(y )
m
o 1
_ TvR) _ T k02
k=1 ow; 2(}/ )
1 m
= 5220/ — wx®) (v — wTx®)
k=1 !

=> (W -w X(k))afv- () — wTxk)) //i-th component only
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GRADIENT DESCENT

Definition (Perceptron Delta Rule (Gradient Descent))
For a given training example (x(9), y(K)) the perceptron adapts its
weights based on the following training rule:

Wi < w; + Aw;

_Uzy(k Wx(k)l()

with x*) being the i-th entry in the k input feature vector w; the
weight of the i-th edge and 7 the learning rate.

e The update rule is tied to the concrete error function (which may
in general not be convex).

e The perceptron converges to a optimal solution if  is sufficiently
small.

e Converging can sometimes be rather slow.
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GRADIENT DESCENT

Data: Training Data (x, y)
Result: Weight vector w
Initialize w; to small random value;

repeat
Aw; = 0;
/* sum up weight changes */

for each training example (x%), y(¥)) do
}A/(k) = WTx(k);
Aw;  Aw; +n(y® — ),

end

/+ apply weight changes */

for each weight w; do

| Wi Wi+ Aw;

end

until termination condition is met;

Algorithm 1: Gradient Descent Algorithm
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GRADIENT DESCENT

e Gradient descent searches through the hypothesis space and is
generally applicable if
1. parameter space is continuous
2. error function is differentiable w.r.t. parameters
e If error surface has multiple minima gradient descent is not
guaranteed to find the global minimum

e Convergence can be slow, at each iteration the model needs to
be applied to the whole training data set
= Stochastic Gradient Descent approximates the gradient
descent solution by updating weights after each data item
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STOCHASTIC GRADIENT DESCENT

Data: Training Data (x, y)
Result: Weight vector w
Initialize w; to small random value;

repeat
Aw; = 0;
/* apply weight changes x/

for each training example (x%), y(¥)) do
PR — wTx):
wi < w; + n(y® — gR0)x;

end

until termination condition is met;

Algorithm 2: Stochastic Gradient Descent Algorithm
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SUMMARY

e Gradient descent updates the weights after calculating the error
for all training samples (the batch), also called batch gradient
descent

Wi +— W+ Aw;

m
A = 30— W)
k=1

]

e Stochastic gradient descent updates the weights after each
training sample, also called incremental gradient descent

5 k
Wi w;+ (Y — §R)x®
e Also known as delta rule, Widrow-Hoff rule and Adaline rule

o If n is sufficiently small stochastic gradient descent approximates
gradient descent at arbitrary accuracy.
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TYPES OF NEURONS

Sigmoid Units

e Values in [0, 1], for large positive and large negative values of x,
the gradient is nearly zero

sigmoid(x)
sigmoid(x)
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TYPES OF NEURONS

Tanh Units(Tangens hyperbolicus)

e Values in [—1, 1], for large positive and large negative values of
X, the gradient is nearly zero
eX — X

tanh(x) = pramp— aﬁxtanh(x) =1 — tanh(x)?
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TYPES OF NEURONS

ReLU (Rectified Linear Units)

e Values in [0, 1], gradient is 1 for all positive values, undefined for
0, but in practice it can be set to either 0 or 1

1 forx >0

relu(x) = max(x, 0) (%re/u(x) =40 for x < 0
undefined x =0

-10 -05 0.0 05 10 -10 -5 0 5 10 98



TYPES OF NEURONS

LReLU (Leaky Rectified Linear Units)

e Adaptation of ReLU, with small constant gradient for values
smaller than 0

5 1 forx >0
Irelu(x) = max(x,0.001) a/re/u(x) = ¢ 0.001 forx <0
undefined x =0

-10 -05 0.0 05 1.0 -10 -5 0 5 10 99



SUMMARY

e Neuron types usage in practise, rules of thumb (as of 2017)

Unit type Comment

o in output layer for binary classification

tanh mostly superior to o

relu similar usage to tanh, use when problems with van-
ishing gradients

Irelu shown to be better than relu, but not much used in

practise
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Back-Propagation




NOTATION

Notation

e n, —input feature vector size

e N, — output size (number of classes)

e y —desired output (target)

e y — predicted output (what the learner produces)
o (x(0 y(k)) — k — th training item

e m— number of examples in the data set

e X € R™*M —input matrix (each item is a column, each feature is
a row)

e L — number of layers in the network

e n, — number of units in the I-th hidden layer

e superscript [/] denotes the index of the layer

e bk € R™ — bias vector for k — th layer

o WK € R7xm™" _ weight matrix before k — th layer 101



NOTATION

e By convention, a neural network with one input, one hidden and
one output layer is called a 2-layer neural network (the input layer
does not count as its units do not compute anything)

i er?  pHer!

_—

O——=0

whl ¢ r3x2 w2l e rix3 single neuron

input layer hidden layer output layer

Figure 46: Simple 2-3-1 multi-layered network 102



NOTATION

e Vector-notation for the example network on the previous slide

bl 2" 2l
bl = [pl1 |, 2= |ZA"], &a"=|3a
(1] [1] [1]
by Z3 3
plel — (bEEI) - <Z1[2]> P (a?])
—wi
Wit — _W2[1]T_ e R3*2 whT = (_W1[2]T_) c R1*3
(T
W3

e with w1[1] being the vector of input weights for the first unit in the

first hidden layer

° w,[k.] can be read as: weight from unit / to unit j in layer k
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FOWARD CALCULATION

Forward Pass

20— Wy 4 plt] - G0 — 201y
2120 — WRIT N 4 pla) g — () —

Checking the dimensions:

1 1 1 ;
it wer) o (B A
A0 [ wll Wl ( >+ | o
wi'l wl!) 2 pill S
13 Wag3 5 !
i
: ? - 5 ! 2 2 2 N
2= (Wl Wl W) & |+ (b)), d=0 ()=
i

e Note: o is applied element-wise to a vector
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BACK-PROPAGATION

General Idea

e Calculate the output of the net for a training example
e Calculate the loss/error for this training example

e Calculate the gradient of the error surface w.r.t. the weights in
each layer

e Adapt the weights in each layer

For the (simpler) derivation of the Back-Propagation algorithm we
make the following assumptions:

1. The activation function of the hidden and output units is the
sigmoid function o (see slide 96).

2. We use the squared loss (see slide 70).
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BACK-PROPAGATION

Loss function
e Forward pass to calculate y

§ = all — 5(212)), 712 — WRIT A" 4 pl2l,
alll — (2010), 21 — WiITx 4 plt]

e We use the squared loss

e To calculate the weight updates we need the partial derivatives of

the loss function w.r.t. to the model parameters W;, W, by, bo:

oL oL oL 9L
owtl» gwel> o1l gpl2l
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BACK-PROPAGATION

Weight update
e The update for a single weight W[/] in any layer is negative
derivative of the loss function w. rt to this weight

e We calculate the gradient and move in the direction of the
steepest descent (minus sign)

W 9L

Wi Wi 8W,-5-”
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BACK-PROPAGATION

Derivation for a single weight

e Derive equations for output units and hidden units separately
e Use a simplified notation as below

output unit O/:idden unit

Figure 47: Simplified notation for output units (left) and input units (right)
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BACK-PROPAGATION

For Output Units

Wig

e Derive 2 aw,’ observe that wj influence £ through z;, and only
through z; (see figure). Using the chain rule for derivates we can
write

s

oL 0L 0z
3W,’j B 872/'5'W,‘/
e Observe that z; influence £ through a;, and only through a;. We
can write

oL _ 0L da 0z

6W,’j o Oaj (92/‘ OW,']'
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BACK-PROPAGATION

For Output Units

oc _ o1 ISV N A S S

9a — 9a.2 Wk =Y)" = 550 =9 =~ =) =~ ~ a)
J J ke Output 1

ey _ & — oz W= a1 a

(972/- = 8721-0(21) =0o(z)(1 —o(z)) = a(1 — )

dz; 0

Z(Wijai) +b=a
i

0W,'/' N 8W,'/'

0L 0L 0a; 0z
= 0 — = —(V; — a; (1 — a; .
dw;  0a; 0z, ow; Wi —a)(g(1 - g))ai
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BACK-PROPAGATION

For Hidden Units

e Derive 2 6W , Observe that wj influence £ through z;, and only
through z; (see figure). Using the chain rule for derivates we can
write

oL 0L 0z
3W/j B 5’72/'5'W,‘/

e Observe that z; influence £ through all z, that is through all
nodes in the next Iayer Therefore

oL (3'Zk dZ/

Z 8zk 82, OW,,

3W,]
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BACK-PROPAGATION

For Hidden Units

0=

e z; influences zx through a&;, and only through &;. Using the chain
rule we can write:

L g5~ OF BRd
P 0z 32] P 0z 8aj 32]
e Getting the partial derivatives
3Zk . 0 e o
873/ = aajzj:VI/Ika/+bk Vij
0a;
szj- =0(z)(1 —o(z)) = a(1 - g) .



BACK-PROPAGATION

For Hidden Units
e Substituting back in

0L 0z 0L 0z 88/ oL
U~ Usk 965 1—a
Z 0z 821 zk: 9z 0a; 0z 32 Wlka/( a/)
oL
=a(1-a) oz Wik

k
e Calculating the loss w.r.t. the weights

oL oL
ow; ~ A~ a)( oz )@

¢ Note, that there are still partial derivates in the formula. However,
if we start from output units and iteratively apply the weight
update, we know because it can be directly computed for
output units
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BACK-PROPAGATION

Propagating through the network

O/( 9 O
& Ozk ak

hidden layer output layer
e For output units
G =~ —a) gl -a)a 5 =-(y - a)(g(1 - a))

e For hidden units
oL
g‘,ﬁ/ =a(1 - a/)(Zk a%k)a/
e Weight update
W,'/' < W,'/' = V]g—vﬁj
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BACK-PROPAGATION

Data: Data set {(x, y)}, trained neural network
Result: Trained neural network
Initialize WI.E.k] to small random values;

while termination criterion not met do

end

for each (x, y) do

/+ forward pass */
calculate y and activation a, of each unit;
/* backward pass */

for each output unit L do
| oo=—-(y-9F1I-9)
end
for each hidden unit h do
‘ 6h = (ah(1 - ah)) Zkesuccessors th(;k;
end
for each weight wj; do
‘ Wijj < W + 7]5/3,‘;
end

Algorithm 3: Backpropagation with stochastic gradient descent
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BACK-PROPAGATION

Notes

e The weight update for the bias units can be similarly calculated
(the formula only differs slightly from the formulas derived for wj).

e The formulas were derived for stochastic gradient descent, but
are not much different for batch gradient descent (only the loss
has to be replaced with the error).

e The derived formulas are tied to the specific choice of loss
function; for each choice of loss function the update rules for the
weights have to be derived separately.

e Because the error surface is in general non-convex,
backpropagation is only guaranteed to converge to a local
minimum, but works surprisingly well in practice.
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BACK-PROPAGATION

overshooting minima

‘/(

stopping in bad minima

P

weights

Figure 48: Possible backpropagation errors
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BACK-PROPAGATION

Heuristics for avoiding typical backpropagation problems

e Weight initialization
e Start with different weight initializations (somewhere else in weight
space, this might lead to better minimum)

e Adaption of n

e Vary n over time
e Start with large learning rate e.g., 0.9, end with small learning rate,
e.g. 0.01
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BACK-PROPAGATION

e There is no optimal learning rate for all problems (all surfaces of
the loss function)

Learning Rate

large small
advantages faster changes in less likely oscillations
plateaus

disadvantages

faster movement towards
distant minima
overshooting small min-
ima

oscillation more likely

small global minima can
be reached
large training time

stalling in plateaus or lo-
cal minima
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Training Heuristics




TRAINING HEURISTICS

General problems when training Neural Networks

e Overfitting (model fits
perfectly to a sample of
the data, but not to unseen
data points)

e Underfitting (model fits
poorly to the data)

e Slow training

e Bad performance (model
does not what it is
supposed to do, or does it

very poorly, for example

Figure 49: Examples of overfitting
Worse.than random (green classifier), underfitting (blue
guessing) classifier) and good fitting models

(brown classifier) (After work from

Chabacano, via Wikimedia Commons) 120



RANDOM INITIALIZATION

0/’

N \
0”0 0/'7
O/\/Q:a

Figure 50: Network with weights initialized to zero

e Consider a network with all weights initialized to zero

e Forward pass for training sample x would lead to all activations in
the hidden layer being the same, i.e., aﬁ” = 3[21] = a[31].

e Backpropagating the error leads to the same update of all the
weights of W (see formulas derived on slide 110) and
consequently all the weights of W!'l receive the same updates

(see formulas derived on slide 111).
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RANDOM INITIALIZATION

e This is not only true for zero weights, but also for weights that are
the same (e.g. if all weights were initialized to 0.001).

e Thus, we need to break the symmetry in order for the network to
learn something.

= Weights should be initialized with small random numbers.
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VANISHING AND EXPLODING GRADIENTS

OO OO
0 DD DD

e Consider the simple network above

S

e The derivative of the loss w.r.t. to the first bias is
% = 0/(21) - Wo -0/(22) - Ws - U/(Zs) - Wy - O'/(Z4) . %

with ¢’ being the derivative of the ¢ activation function
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VANISHING AND EXPLODING GRADIENTS

0.8 0
I I
0.20 0.25
I I

sigmoid(x)
sigmoidder(x)
015

L

04
0.10
I

0.2
I
0.05
I

0.0
I
0.00
I

Figure 51: Sigmoid activation function (left) and its derivative (right)
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VANISHING AND EXPLODING GRADIENTS

o If the argument of the sigmoid function is large (either positive or
negative), the derivative ¢’(-) is near zero

e o'(+) is 0.25 at maximum
e For the derivative of the loss w.r.t. to weights and biases in lower

layers of the network, the single derivatives o'(-) get multiplied,
and thus the values get even smaller.

e This phenomenon is called vanishing gradients, i.e., gradients
that are nearly zero, which means there are no changes after the
update of biases and weights and learning is very slow (and
sometimes non-existent).

e Similarly, gradients can also explode (be very large) and cause
the network to overstep minima.
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VANISHING AND EXPLODING GRADIENTS

Things to try:
= Gradient clipping (normalize the gradient vectors to maximal
length) - for exploding gradients
= Choose different activation functions (e.g. ReLU)

= For recurrent problems, other architectures, e.g. Long
Short-Term Memory (LSTMs) networks
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EARLY STOPPING

e When models are trained too long (with not enough variance in
training data) they might adapt to noise in the training data, that
is, they might overfit

e This can be observed by plotting the changes in error over
training time for both, training and validation set

e = Stop when the error on the validation set starts to increse

epochs

Figure 52: Overfitting can be prevented by stopping training at the time

127
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REDUCE NUMBER OF HYPERPARAMETERS

¢ |f the model does overfit, the reason might be, that there are too
many free parameters that have to be fixed.
¢ In the example, a polynomial with degree k > 2 overfits, while a
quadratic function provides a good fit
e In neural networks the number of parameters can be reduced by
e Removing layers of the network
e Removing nodes from layers of the network
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WEIGHT REGULARIZATION

e Regularization is a technique to prevent overfitting
A term that "regularizes” the weights is added to the loss function

Squared loss

N 1 N
Ly, ) =50 =97
L2-regularized squared loss, with m being the size of the training
data set, A regularization parameter

L0-9) = g0 9+ 5 S

In general, a L2-regularized loss function can be written as
L =1Ly —‘r — Z w2

with £y being the unregularized loss function
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WEIGHT REGULARIZATION

e The regularization term forces the weights to be small.

e )\ expresses how much influence the regularization should have
relative to the original loss function.

e Regularization can also improve performance if enough training
data is available. Intuition: With unregularized loss functions the
length of the weight vector is likely to grow. Changes due to
gradients do not change the vector much (since the changes are
added to the old vector, which is large). Thus, the vector more or
less always points in the same direction. This means, that in an
unregularized setting, the weight space can not properly
explored.®

5This fact has not been proven, but it seems reasonable and empirical evidence exists.
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DRoPOUT [9]

e Complex models can learn complex relationships in the data.

¢ In case there is not enough training data, models learn patterns
in the data that are results of sampling noise (if more data would
be available, there would be more variance and the model could
learn that those relations are actually NOT patterns).

e This leads to overfitting, i.e. adapting to patterns of the training
data, that are not present in the general population or in the test
data.

e One solution would be: train multiple models with different
parameter settings and average their decision. The assumption
is that while some models overfit on noisy patterns others will not
(this is called ensemble learning).

e For deep neural networks, training multiple models is usually not
feasible.

— Dropout is an approximate solution.
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DRoPOUT [9]

e Dropout prevents overfitting and combines multiple models
efficiently.
e Idea:

For each training sample temporarily remove a hidden or visible
unit (and all its connections) in the network with probability 1 — p
(e.g. 0.5) during training.

This means, this training sample is trained on a thinned neural
network that shares weights with the original network.

The network is trained with back-propagation (stochastic gradient
descent).

At test time, the whole model is used, but the learned weights are
multiplied by p.

This approximates averaging over all trained "thinned” networks.
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(b) After applying dropout.
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Figure 53: Droping out nodes during training results in thinned networks

(figure taken from [9]



DRoPOUT [9]

w W
Present with Always
probability p present

(a) At training time (b) At test time

Figure 54: During testing, the full network is used. The weights for edges are
multiplied by the probability that the node was present during training. (figure
taken from [9])
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Special Architectures




SPECIAL ARCHITECTURES

Neural Networks differ in

e number and types of neurons
e types and direction of connections
e number of layers

e learning algorithm (aside from Backprop there is also Hebbian
learning for instance)

We review some recent architecture types here. A nice (visual)
overview can be found at
http://www.asimovinstitute.org/neural-network—-zoo/.
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FEEDFORWARD NETWORK (FF)

Figure 55: Simple 2 layer feedforward network

e Feedforward connections from input to output layer

o If there is more than 1 hidden layer, the network is called "deep”

e Each hidden layer corresponds to a transformation of the
incoming data, i.e., there are many sequential transformations of
the input data.

e Activation function in the hidden layer need to be non-linear
(otherwise the computed function from input to output is also just

linear).
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RECURRENT NEURAL NETWORK (RNN)

O

VA

Figure 56: Simple recurrent neural network

There are cyclic connections in the network.

Good for modelling sequential data, but very hard to train.

If hidden connections are recurrent, the network can remember
information (about the input sequence).

Training is done by unrolling the network over time using the
back-propagation algorithm (back-propagation through time).
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AUTOENCODERS (AE)

Figure 57: Simple autoencoder

e Architecture is similar to feedforward network.

e During training it is required that y = x, i.e., the network is
trained to reproduce the input.

e Tied weights (W> = W]) could be used to reduce the number of
parameters to train.

e The hidden layer then corresponds to compressed
representation of the data.
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AUTOENCODERS (AE)

Variations

e Sparse Autoencoder
e The number of hidden units is larger than the number of inputs.
e A sparsity constraint is added to the loss function forcing the
network to learn a code dictionary for the data.
e Denoising Autoencoder
e The number of hidden units is smaller than the number of input
units.
e The input to the network is a distorted version of the data x, and
the network is trained to produce x.
e The network learns robust representations of x.
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LONG SHORT-TERM MEMORY NETWORK (LSTM)

e Are recursive neural networks
e Provide a solution to vanishing gradient problem [5].

e Network contains information outside the normal information flow
in special cells (gated cells).

e From gated cells information can be read / stored / modified
based on the status of gates ( output gate / input gate / forget
gate).

e Gates are analog (based on multiplication with sigmoids).

e Gates act based on the strength (input) and the importance
(weight) of the signal.

e Weights on gates are learned (backpropagation through time),
thus, the cell learns when to store, forget or modify its content.
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LONG SHORT-TERM MEMORY NETWORK (LSTM)

h(st) * Yout

h(sc)

Sc = Sc " Yforg

Yout () —

v;\ Wout

netu’u,f,

Ytorg
Wgorg

Nnet forg

Yin /\/
Win

}
s
e

4 9(7;6%) “Yin ffo

A

netin

Q© output gate
. forget gate
O input gate

(] st™cen

Sc  state of memory cell

input/output squashing

Figure 58: Long short-term memory network
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EXERCISE

What happens in the LSTM cell for the following configurations:

Yout = 1syforg: 1a}//‘n:O
Yout = 0, Ytorg = 0, Yin = 1
Yout =0, Yrorg =1, Yin =1
Yout = 1syforg: 1’yin: 1?

N =

state of cell is read (output)

input is stored

input is combined with stored value (cell is modified)

input is combined with stored value (cell is modified) and

presented as ouput 142
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LONG SHORT-TERM MEMORY NETWORK (LSTM)

Applications

e Machine Translation (learn a sequence from a sequence) [10]

| Type Sentence ]
Our model | Ulrich UNK , membre du conseil d' administration du constructeur automobile Audi ,
affirme qu’ il 8" agit d" une pratique courante depuis des années pour que les wéléphones
portables puissent &tre collectés avant les réunions du conseil d” administration afin qu’ ils
ne soient pas utilisés comme appareils d' écoute i distance .

Truth Ulrich Hackenberg , membre du conseil d” administration du constructeur automobile Audi |
déclare que la collecte des téléphones portables avant les réunions du conseil |, afin qu” ils

ne puissent pas &tre utilisés comme appareils d' écoute i distance , est une pratique courante
depuis des années .

Our model | * Les téléphones cellulaires , qui sont vraiment une guestion , non seulement parce qu’ ils
pourraient potentiellement causer des interférences avec les appareils de navigation , mais
nous savons , selon la FCC | qu” ils pourraient interférer avec les tours de téléphone cellulaire
lorsqu’ ils sont dans 1" air ™, dit UNK .

Truth * Les téléphones portables sont véritablement un probléme |, non seulement parce qu’ ils
pourraient éventuellement créer des interférences avec les instruments de navigation , mais
parce que nous savons , d" aprés la FCC | qu’ ils pourraient perturber les antennes-relais de
téléphonie mobile 8" ils sont utilisés & bord ™ , a déclaré Rosenker .

Figure 59: Example of translation result (Source [10])
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LONG SHORT-TERM MEMORY NETWORK (LSTM)

Applications

e Handwriting Generation [4]
male Jf no Mool tﬁf‘”\ﬁﬁﬂi/’mﬂfh&
pt OfF hahonal /(emfaercwm}
more o national femperamant
M f‘(f matuisl  tompormnnt
move. of 74 formpo oot

moO(e CD/L E/"CA—\.?M&L{‘\Y&MO’PVMM';

Figure 60: Example of generated handwriting (top example is actual
handwriting) (Source [4]) 144



LONG SHORT-TERM MEMORY NETWORK (LSTM)

Applications
e Image Captioning [11]

A person riding a
motorcycle on a dirt road.

Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a

A refrigerator filled with lots of

Two hockey players are A little girl in a pink hat is
food and drinks.

fighting over the puck. wing bubbles.,

A herd of elephants walking
across a dry grass fiel

A close up of a cat laying

on a couch. A yellow school bus parked

A red motorcycle parked on
=y =i a parking lot

Describes withouterrors  Descrlbes with minorerrors  Somewhat related 1o the image

Figure 61: Example output (top example is actual handwriting) (Source [11]) 145



GENERATIVE ADVERSARIAL NETWORK (GAN)

YR Prediction
" i . c
g—, Discriminator X (Real/Fake)

Real Data

Generator @

Fake Data

.

Noise

Figure 62: Generative Adversarial Network

Consists of two networks that compete against each other

The generator network generates data from a random
distribution that looks like real data

e The discriminator network learns to distinguish real and fake

e The better the discriminator gets in distinguishing real from fake
data, the better the generator gets to produce fake data and vice
versa
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GENERATIVE ADVERSARIAL NETWORK (GAN)

o Generator produces samples x = g(z,6(9)), with z being the
distribution of the random seeds and 6'9) the parameters of the
generator network

e Discriminator produces a probability p = d(x, #(?)) indicating that
a sample belongs to the real distribution

e Formulation as zero-sum game, goal is to find Nash equilibrium

e Payoff discriminator v(69), (@)

e Payoff generator —v(9@, (%)

e Learning is trying to maximize payoff (each networks wants to gain
as much as possible), GAN converges to the optimal generator

g =arg min max v(g,d)
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GENERATIVE ADVERSARIAL NETWORK (GAN)

e Payoff function:

V(69 ,0(D) = E a1 log(p) + Esre(1 — log(p))

with real being the real data distribution, fake the generated fake
data distribution and E being the expected value
e v is large if the probability given by the discriminator for real data is
large and for fake data is small (discriminator can distinguish real
and fake)
e vis small if the probability given by the discriminator for fake data is
large and for real data is small (discriminator thinks real is fake and
vice versa)

e At convergence, the discriminator output % for all samples (either
real of fake)
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GENERATIVE ADVERSARIAL NETWORK (GAN)

Examples

e Predicting the next frame in a video. Left: actual frame of the
video, center: model predicting based on mean squared error
using the current frame, right: additional GAN that is forced to
produce realistic images (cf. ears)

Ground Truth MSE Adversarial

Figure 63: Predicting next frame in a video (Source [2]) 149



GENERATIVE ADVERSARIAL NETWORK (GAN)

Examples

e Generating realistic superresolution images from example
images in small resolution

original bicubic SRResNet SRGAN
(21.59dB/0.6423) (23.44dBN0.7777) (20.34dB/0.6562)

Figure 64: Generating realistic images (Source [2])
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GENERATIVE ADVERSARIAL NETWORK (GAN)

Examples

e Impainting of images (fixing holes realistically)

Input TV

Figure 65: Image impainting (right GAN) (Source [12]) 151



SELF-ORGANISING MAPS (SOMSs)

e Unsupervised learning, the network tries to learn pattern from
the data (without a ground-truth)
e Can be used for dimensionality reduction
e Learning algorithm different, no error optimization based on
gradients but competitive learning
e when the network is presented with a data sample, all output
neurons compete agains each other
e the winning neuron’s weights get updated, such that it would
produce a stronger response to the same data sample next time
e the winning neuron’s neighbours also get updated similarly, but to a
lower extent

e Self-organizing maps resemble some properties of how learning
is done in the brain (and was used to study this)
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SELF-ORGANISING MAPS (SOMSs)

input grid of nodes

Figure 66: General architecture of a SOM

e output nodes are arranged in a grid, each node has a
neighbourhood defined
e all input nodes are fully connected to output nodes 153



SELF-ORGANISING MAPS (SOMSs)

input grid of nodes

Figure 67: General architecture of a SOM

Notation:

e input data x/ € R™ is the k-th data point
e v; is the j-th output node
e w; are the weights associated with node v;
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SELF-ORGANISING MAPS (SOMSs)

General Idea of Learning in SOMs

1. Initialize all weights randomly (Initialization)

2. Determine the neuron that is most similar to the current input
vector (according to some similarity measure), this is the winning
neuron (Competition)

3. Determine the neighborhood of the winning neuron
(Cooperation)

4. Make the weights of the winning neuron and — to a lesser extent
— its neighbours more similar to the current input, such that it will
get even more activated when seeing the same data point again
(Update)
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SELF-ORGANISING MAPS (SOMSs)

Competition

e A similarity function defines how similar the input vector is to
each node

e For instance, the Euclidean distance can be used

with x¥ being the k-th coordinate of sample i

e The winning neuron v, is the one with the lowest Euclidean
distance to x;

v, = argmin;(d(x;, vj))
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SELF-ORGANISING MAPS (SOMSs)

Cooperation

¢ A neighborhood function N, , defines the influence of the update
on the neighbors v of the winning node v.

e Simple choices are the Moore or von-Neumann neighborhoods,
N,., = 1 for all neighbors of v, and N, , = 0 for all other nodes

e Other choice is Gaussian neihborhood

—Sv,,u

NVU:e 202

¢

with o being the variance and s,, , the grid distance between
nodes u and v

e The neighborhood should get smaller over time, thus the
neihborhood function is a function of time; for Gaussian o can be
made to decrease over time
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SELF-ORGANISING MAPS (SOMSs)

Update

e Using a neighborhood, the network only learns locally
e Update rule

Awj = n(t) - Ny.o(t) - (x; — w))

e The learning rate 7(t) decreases over time

e The neighborhood function N,, ,(t) depends on time, becoming
more local

e The term (x; — w;) arises from the derivative of the distance
function (we wanted to minimize the distance between input and
a node, which is represented by its weights)
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SELF-ORGANISING MAPS (SOMSs)

Example
..7;4 @
[ ]

T5 T W

[ ) - @
T
- v3)
[ ]
Te6 °
Z3

@

e Six data points x; in 2-dimensional space
e SOM with four nodes v;
e Input to SOM are coordinates of data points
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SELF-ORGANISING MAPS (SOMSs)

Example

e After initialization of weights
e Each node v; can be represented in feature space using its
weights w;
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SELF-ORGANISING MAPS (SOMSs)

Example
@
7
- ©3
@
e Input of x4

e Wining neuron is v»
e V»'s weights w, get updated, v» moves closer to x; (for simplicity
update of neighborhood is ignored)
161



SELF-ORGANISING MAPS (SOMSs)

Example
@
7
- ©3
@
e Input of x»

e Wining neuron is v»
e V»'s weights w, get updated, v» moves closer to x» (for simplicity
update of neighborhood is ignored)
162



SELF-ORGANISING MAPS (SOMSs)

Example
@
7
- ©3
@
e Input of x3

e Wining neuron is v
e vi's weights wy get updated, vi moves closer to x3 (for simplicity
update of neighborhood is ignored)
163



SELF-ORGANISING MAPS (SOMSs)

e The data distribution’s shape (grey dots) is well approximated by
a SOM (red dots)

e For dimensionality reduction each data point can be represented
by its nearest SOM node (the winner)

variance

unexplaine

2323%
S0M B.26%

Figure 68: Dimensionality reduction with SOMs (CC-SA 3.0, Agor153, via Wikimedia
Commons)
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Summary




SUMMARY

e Neural Networks with many hidden layers (Deep Neural
Networks) trained on a lot of training data are capable of
achieving near human performance on certain tasks (e.g. object
recognition).

e Backpropagation is the de-facto standard training algorithm,
implementing a gradient descent on the error surface.

e Neural networks differ in

e their architecture (types of neurons, number of layers, structure of
connections)

e the number of hyperparameters
e training method (algorithm, training parameters, data set)
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SUMMARY

Neuron

Supervised, unsupervised, semisupervised learning
Parameters, hyperparameters

Perceptron

Back-Propagation

Feedforward and Recurrent Neural Networks and derivations
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FURTHER READINGS

e Machine Learning (general ML introductory book)
Thomas M. Mitchell. Machine Learning. 1sted. New York, NY, USA:
McGraw-Hill, Inc., 1997. 1ISBN: 0070428077, 9780070428072

e Deep Learning
Chapter available online http://www.deeplearningbook.org
lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016

e Neural Networks and Deep Learning (online book)
http://neuralnetworksanddeeplearning.com/
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