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Abstract In recent years, Deep Neural Networks (DNNs) have been shown to out-
perform the state-of-the-art in multiple areas, such as visual object recognition, ge-
nomics and speech recognition. Due to the distributed encodings of information,
DNNs are hard to understand and interpret. To this end, visualizations have been
used to understand how deep architecture work in general, what different layers of
the network encode, what the limitations of the trained model was and to interac-
tively collect user feedback. In this chapter, we provide a survey of visualizations of
DNNss in the field of computer vision. We define a classification scheme describing
visualization goals and methods as well as the application area. This survey gives
an overview of what can be learned from visualizing DNNs and which visualiza-
tion methods were used to gain which insights. We found that most papers use pixel
displays to show neuron activations. However, recently more sophisticated visual-
izations like interactive node-link diagrams were proposed. The presented overview
can serve as a guideline when applying visualizations while designing DNNs.

1 Introduction

Artificial Neural Networks for learning mathematical functions have been intro-
duced in 1943 [48]. Despite being theoretically able to approximate any function [8],
their popularity decreased in the 1970’s because their computationally expensive
training was not feasible with available computing resources [49]. With the increase
in computing power in recent years, neural networks again became subject of re-
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search as Deep Neural Networks (DNNs). DNNs, artificial neural networks with
multiple layers combining supervised and unsupervised training, have since been
shown to outperform the state-of-the-art in multiple areas, such as visual object
recognition, genomics and speech recognition [36]. Despite their empirically supe-
rior performance, DNN models have one disadvantage: their trained models are not
easily understandable, because information is encoded in a distributed manner.

However, understanding and trust have been identified as desirable property of
data mining models [65]. In most scenarios, experts can assess model performance
on data sets, including gold standard data sets, but have little insights on how and
why a specific model works [82]. The missing understandability is one of the rea-
sons why less powerful, but easy to communicate classification models such as deci-
sion trees are in some applications preferred to very powerful classification models,
like Support Vector Machines and Artificial Neural Networks [33]. Visualization
has been shown to support understandability for various data mining models, e.g.
for Naive Bayes [2] and Decision Forests [66].

In this chapter, we review literature on visualization of DNNs in the com-
puter vision domain. Although DNNs have many application areas, including au-
tomatic translation and text generation, computer vision tasks are the earliest ap-
plications [35]. Computer vision applications also provide the most visualization
possibilities due to their easy-to-visualize input data, i.e., images. In the review, we
identify questions authors ask about neural networks that should be answered by a
visualization (visualization goal) and which visualization methods they apply there-
fore. We also characterize the application domain by the computer vision task the
network is trained for, the type of network architecture and the data sets used for
training and visualization. Note that we only consider visualizations which are au-
tomatically generated. We do not cover manually generated illustrations (like the
network architecture illustration in [35]). Concretely, our research questions are:

RQ-1 Which insights can be gained about DNN models by means of visualization?
RQ-2 Which visualization methods are appropriate for which kind of insights?

To collect the literature we pursued the following steps: since deep architectures
became prominent only a few years ago, we restricted our search starting from the
year 2010. We searched the main conferences, journals and workshops in the area
of computer vision, machine learning and visualization, such as: IEEE International
Conference on Computer Vision (ICCV), IEEE Conferences on Computer Vision
and Pattern Recognition (CVPR), IEEE Visualization Conference (VIS), Advances
in Neural Information Processing Systems (NIPS). Additionally, we used keyword-
based search in academic search engines, using the following phrases (and combi-
nations): “deep neural networks”, “dnn”, “visualization”, “visual analysis”, “visual
representation”, “feature visualization”.

This chapter is organized as follows: the next section introduces the classification
scheme and describes the categories we applied to the collected papers. Section 3
reviews the literature according to the introduced categories. We discuss the findings
with respect to the introduced research questions in section 4, and conclude the work
in section 5.
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2 Classification Scheme

In this chapter we present the classification scheme used to structure the literature:
we first introduce a general view, and then provide detailed descriptions of the cat-
egories and their values. An overview of the classification scheme is shown in Fig-
ure 1.

First, we need to identify the purpose the visualization was developed for. We
call this category visualization goal. Possible values are for instance general un-
derstanding and model quality assessment. Then, we identified the visualization
methods used to achieve the above mentioned goals. Such methods can potential
cover the whole visualization space [51], but literature review shows that only a
very small subset has been used so far in the context of DNNs, including heat maps
and visualizations of confusion matrices. Additionally, we introduced three cate-
gories to describe the application domain. These categories are the computer vision
task, the architecture type of the network and the data sets the neural network was
trained on, which is also used for the visualization.

Note, that the categorization is not distinct. This means that one paper can be
assigned multiple values in one category. For instance, a paper can use multiple
visualization methods (CNNVis uses a combination of node-link diagrams, matrix
displays and heatmaps [44]) on multiple data sets.

General understanding
Architecture assessment P <

Model quality assessment Computer Vision
User feedback integration > pTask

Visualization Goal _ .

Visualisations of ]
_ | Type of Network
Deep Neural o Architecture
Networks

Visualization Method |<e— b g
Pixel display Histogram » Data Set
Confusion Matrix Similarity layout
HeatMap Node-Link diagram N J

Fig. 1 Classification Scheme for Visualizations of Deep Neural Networks. The dotted border sub-
sumes the categories characterizing the application area.

Related to the proposed classification scheme is the taxonomy of Griin et al. for
visualizing learned features in convolutional neural networks [25]. The authors cate-
gorize the visualization methods into input modification, de-convolutional and input
reconstruction methods. In input modification methods, the output of the network
and intermediate layers is measured while the input is modified. De-Convolutional
methods adapt a reverse strategy to calculate the influence of a neuron’s activation
from lower layers. This strategy demonstrates which pixels are responsible for the
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activation of neurons in each layer of the network. Input reconstruction methods try
to assess the importance of features by reconstructing input images. These input im-
ages can either be real or artificial images, that either maximize or lead to an output
invariance of a unit of interest. This categorization is restricted to feature visualiza-
tions and therefore narrower as the proposed scheme. For instance, it does not cover
the general application domain, and is restricted to specific type of visualizations,
because it categorizes the calculation methods used for pixel displays and heatmaps.

Visualization Goals

This category describes the various goals of the authors visualizing DNNs. We iden-
tified the following four main goals:

>

>

General Understanding: This category encompasses questions about general
behavior of the neural network, either during training, on the evaluation data set
or on unseen images. Authors want to find out what different network layers are
learning or have learned, on a rather general level.

Architecture Assessment: Work in this category tries to identify how the network
architecture influences performance in detail. Compared to the first category
the analyses are on a more fine-grained level, e.g. assessing which layers of the
architecture represent which features (e.g., color, texture), and which feature
combinations are the basis for the final decision.

Model Quality Assessment: In this category authors have focused their research
goal in determining how the number of layers and role played by each layer can
affect the visualization process.

User Feedback Integration: This category comprises work in which visualiza-
tion is the means to integrate user feedback into the machine learning model.
Examples for such feedback integration are user-based selection of training
data [58] or the interactive refinement of hypotheses [21].

Visualization Methods

Only a few visualization methods [51] have been applied to DNNs. We briefly de-
scribe them in the following.

>

>

Histogram: A histogram is a very basic visualization showing the distribution
of univariate data as a bar chart.

Pixel Displays: The basic idea is that each pixel represents a data point. In the
context of DNN, the (color) value for each pixel is based on network activation,
reconstructions or similar and yield 2-dimensional rectangular images. In most
cases the pixels next to each other in the display space are also next to each other
in the semantic space (e.g., nearby pixels of the original image). This nearness
criterion is defined on the difference from Dense Pixel Displays [32]. We further
distinguish whether the displayed values originate from a single image, from a
set of images (i.e., a batch), or only from a part of the image.
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>

Heat Maps: Heat maps are a special case of pixel displays, where the value for
each pixel represents an accumulated quantity of some kind and is encoded us-
ing a specific coloring scheme [73]. Heat maps are often transparently overlaid
over the original data.

Similarity Layout: In similarity-based layouts the relative positions of data ob-
jects in the low-dimensional display space is based on their pair-wise similarity.
Similar objects should be placed nearby in the visualization space, dissimilar
objects farther apart. In the context of images as objects, suitable similarity
measures between images have to be defined [53].

Confusion Matrix Visualization: This technique combines the idea of heatmaps
and matrix displays. The classifier confusion matrix (showing the relation be-
tween true and predicted classes) is colored according to the value in each cell.
The diagonal of the matrix indicates correct classification and all the values
other than the diagonal are errors that need to be inspected. Confusion matrix
visualizations have been applied to clustering and classification problems in
other domains [70].

Node-Link Diagrams are visualizations of (un-)directed graphs [1], in which
nodes represents objects and links represent relations between objects.

Computer Vision Tasks

In the surveyed papers different computer vision tasks were solved by DNNs. These
are the following:

>
>
>

Classification: The task is to categorize image pixels into one or more classes.
Tracking: Object tracking is the tasks of locating moving objects over time.
Recognition: Object recognition is the task of identifying objects in an input
image by determining their position and label.

Detection: Given an object and an input image the task in object detection is to
localize this object in the image, if it exists.

Representation Learning: This task refers to learning features suitable for object
recognition, tracking etc. Examples of such features are points, lines, edges,
textures or geometric shapes.

Network Architectures

We identified six different types of network architectures in the context of visual-
ization. These types are not mutually exclusive, since all types belong to DNNs, but
some architectures are more specific, either w.r.t. the types of layers, the type of
connections between the layers or the learning algorithm used.

>

>

DNN: Deep Neural Networks are the general type of feed-forward networks
with multiple hidden layers.

CNN: Convolutional Neural Networks are a type of feed-forward networks
specifically designed to mimic the human visual cortex [22]. The architecture



6 Seifert et al.

consists of multiple layers of smaller neuron collections processing portions of
the input image (convolutional layers) generating low-level feature maps. Due
to their specific architecture CNNs have much fewer connections and parame-
ters compared to standard DNNSs, and thus are easier to train.
> DCNN: The Deep Convolution Neural Network is a CNN with a special eight-
layer architecture [35]. The first five layers are convolutional layers and the last
three layers are fully connected.
> DBN: Deep Belief Networks can be seen as a composition of Restricted Boltz-
mann Machines (RBMs) and are characterized by a specific training algo-
rithm [27]. The top two layers of the network have undirected connections
whereas the lower layers have directed connection with the upper layers.
> CDBN: Convolutional Deep Belief Networks are similar to DBNs, containing
Convolutional RBMs stacked on one another [38]. Training is performed similar
to DBNs using a greedy layer-wise learning procedure i.e. the weights of trained
layers are fixed and considered as input for the next layer.
> MCDNN: The Multicolumn Deep Neural Networks is basically a combination
of several DNN stacked in column form [7]. The input is processed by all DNN's
and their output aggregated to the final output of the DNN.
In the next section we will apply the presented classification scheme (cf. Figure 1)
to the selected papers and provide some statistics on the goals, methods and appli-
cation domains. Additionally, we categorize the papers according to the taxonomy
of Griin [25] (input modification methods, de-convolutional methods and input re-
construction) if this taxonomy is applicable.

3 Visualizations of Deep Neural Networks

Table 1 provides an overview of all papers included in this survey and their catego-
rization. The table is sorted first by publication year and then by author name. In the
following, the collected papers are investigated in detail, whereas the subsections
correspond to the categories derived in the previous section.

3.1 Visualization Goals

Table 2 provides an overview of the papers in this category. The most prominent goal
is architecture assessment (16 papers). Model quality assessment was covered in 8
and general understanding in 7 papers respectively, while only 3 authors approach
interactive integration of user feedback.

Authors who have contributed work on visualizing DNNs with the goal general
understanding have focused on gaining basic knowledge of how the network per-
forms its task. They aimed to understand what each network layer is doing in gen-
eral. Most of the work in this category conclude that lower layers of the networks
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Table 1 Overview of all reviewed papers

Author(s) Year Vis. Goal Vis. Method CV task Arch.  Data Sets
Simonyan et al. [61] 2014 General understanding  Pixel displays Classification CNN  ImageNet
Yuetal. [81] 2014 General understanding Pixel displays Classification CNNs ImageNet
Lietal. [41] 2015 General understanding Pixel displays Representation Learning DCNN  Buffy Stickmen, ETHZ Stickmen, LSP,
Synchronic  Activities Stickmen, FLIC,
WAF
Montavon et al. [50] 2015 General understanding Heat maps Classification DNNs ImageNet, MNIST
Yosinski et al. [80] 2015 General understanding Pixel displays Classification DNN ImageNet
Mahendran & Vedaldi [47] 2016 General understanding Pixel displays Representation Learning CNN ILSVRC-2012, VOC2010
Wu et al. [75] 2016 General understanding Pixel displays Recognition DBN ChaLearn LAP
Ciresan et al. [7] 2012 Architecture assessment  Pixel displays, Recognition MCDNN MNIST, NIST SD, CASIA-HWDBI.I,
Confusion Matrix GTSRB trafc sign dataset, CIFAR10
Huang [28] 2012 Architecture assessment  Pixel displays Representation Learning CDBN ~ LFW
Szegedy et al. [63] 2013 Architecture assessment ~ Heat maps Detection DNN VOC2007
Long et al.[45] 2014 Architecture assessment  Pixel displays Classification CNNs ImageNet, VOC
Taigman et al. [64] 2014 Architecture assessment  Pixel displays Representation Learning DNN SFC, YTF, LFW
Yosinski et al. [79] 2014 Architecture assessment  Pixel displays Representation Learning CNN ImageNet
Zhou et al. [85] 2014 Architecture assessment  Pixel displays Recognition CNN ImageNet, SUN397, MIT Indoor67,
Scenel5, SUNAttribute, ~Caltech-101,
Caltech256, Stanford Action40, UIUC
Event8
Zhou et al. [83] 2014 Architecture assessment  Pixel displays Classification CNNs  SUN397, Scenel5
Mahendran & Vedaldi [46] 2015 Architecture assessment  Pixel displays Representation Learning CNN ILSVRC-2012
Samek et al. [56] 2015 Architecture assessment  Pixel displays, Heat ~ Classification DNN SUN397, ILSVRC-2012, MIT
maps
Wang et al. [71] 2015 Architecture assessment  Pixel displays Detection CNNs PASCAL3D+
Zhou et al. [84] 2015 Architecture assessment  Heat maps Recognition CNNs ImageNet
Gruen et al. [25] 2016 Architecture assessment  Pixel displays Representation Learning DNN ImageNet
Lin & Maji [42] 2016 Architecture assessment  Pixel displays Recognition CNN FMD, DTD, KTH-T2b, ImageNet
Nguyen et al. [52] 2016 Architecture assessment  Pixel displays Tracking DNN ImageNet, ILSVRC-2012
Zintgraf [86] 2016 Architecture assessment  Pixel displays, Classification DCNN  ILSVRC
HeatMaps
Erhan et al. [16] 2010 Model quality assessment Pixel displays Representation Learning DBN MNIST, Caltech-101
Krizhevsky et al. [35] 2012 Model quality assessment  Histogram Classification DCNN  ILSVRC-2010, ILSVRC-2012
Dai & Wu [9] 2014 Model quality ass: ent Pixel displays Classification CNNs ImageNet, MNIST
Donahue et al. [11] 2014 Model quality assessment Similarity layout Classification DNN ILSVRC-2012, SUN397, Caltech-101,
Caltech-UCSD Birds
Zeiler & Fergus [82] 2014 Model quality assessment Pixel displays, Classification CNN ImageNet, Caltech-101, Caltech256
HeatMap
Cao et al. [4] 2015 Model quality assessment Pixel displays Tracking CNN ImageNet 2014
Wang et al. [72] 2015 Model quality assessment Heat maps Tracking CNN ImageNet
Dosovitskiy & Brox [12] 2016 Model quality assessment Pixel Displays Representation Learning CNN ImageNet
Bruckner [3] 2014 User Feedback Integration Pixel displays, Classification DCNN  CIFAR-10, ILSVRC-2012
Confusion Matrix
Harley [26] 2015 User feedback integration Pixel displays, Recognition CNNs MNIST
Node-Link-Diagram
Liu et al. [44] 2016 User feedback integration Pixel displays, Classification CNNs CIFAR10

Node-Link-
Diagrams

Table 2 Overview of visualization goals

Category

# Papers References

Architecture assessment

16

Model quality assessment 8

General understanding

7

User feedback integration 3

[7,25, 28,42, 45, 46, 52, 56, 63, 64, 71,79, 83, 84, 85, 86]

[4,9,11, 12,

16, 35, 72, 82]

[41, 47, 50, 61, 80, 75, 81]

[3, 26, 44]
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contains representations of simple features like edges and lines, whereas deeper
layers tend to be more class-specific and learn complex image features [61, 41, 47].
Some authors developed tools to get a better understanding of learning capabilities
of convolutional networks! [80, 3]. They demonstrated that such tools can provide
a means to visualize the activations produced in response to user inputs and showed
how the network behaves on unseen data.

Approaches providing deeper insights into the architecture were placed into the
category architecture assessment. Authors focused their research on determining
how these networks capture representations of texture, color and other features that
discriminate an image from another, quite similar image [56]. Other authors tried to
assess how these deep architectures arrive at certain decisions [42] and how the input
image data affects the decision making capability of these networks under different
conditions. These conditions include image scale, object translation and cluttered
background scenes. Further, authors investigated which features are learned, and
whether the neurons are able to learn more than one feature in order to arrive at a
decision [52]. Also, the contribution of image parts for activation of specific neurons
was investigated [86] in order to understand for instance, what part of a dog’s face
needs to be visible for the network to detect it as a dog. Authors also investigated
what types of features are transferred from lower to higher layers [79, 80], and have
shown for instance that scene centric and object centric features are represented
differently in the network [85].

Eight papers contributed work on model quality assessment. Authors have fo-
cused their research on how the individual layers can be effectively visualized, as
well as the effect on the network’s performance. The contribution of each layer at
different level greatly influence their role played in computer vision tasks. One such
work determined how the convolutional layers at various levels of the network show
varied properties in tracking purposes [72]. Dosovitskiy & Bronx have shown that
higher convolutional layers retain details of object location, color and contour in-
formation of the image [12]. Visualization is used as a means to improve tools for
finding good interpretations of features learned in higher levels [16]. Kriszhesvsky
et al. focused on performance of individual layers and how performance degrades
when certain layers in the network are removed [35].

Some authors researched user feedback integration. In the interactive node-link
visualization in [26] the user can provide his/her own training data using a drawing
area. This method is strongly tied to the used network and training data (MNIST
hand written digit). In the MI-O-Scope system users can interactively analyze convo-
lutional neural networks [3]. Users are presented with a visualization of the current
model performance, i.e. the a-posteriori probability distribution for input images and
pixel displays of activations within selected network layers. They are also provided
with a user interface for interactive adaption of model hyper-parameters. A visual
analytics approach to DNN training has been proposed recently [44]. The authors
present 3 case studies in which DNN experts evaluated a network, assessed errors
and found directions for improvement (e.g. adding new layers).

! Tools available http:/yosinski.com/deepvis and https://github.com/bruckner/deepViz, last ac-
cessed 2016-09-08
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3.2 Visualization Methods

In this section we describe the different visualization methods applied to DNNs.
An overview of the methods is provided in Table 3. We also categorize the papers
according to Griin’s taxonomy [25] in Table 4. In the following we describe the
papers for each visualization method separately.

Table 3 Overview of visualization methods

Category Sub-Category # Papers References
Pixel displays single image 24 [4,7,9,12, 16, 25, 26, 41, 42, 44, 45, 46, 47,
52,56,61,72,71,75,79, 80, 81, 82, 86]

image batch 4 [3, 28, 35, 85]
part of image 2 [64, 83]

Heat maps 6 [50, 56, 63, 72, 82, 84, 86]

Confusion matrix 2 3,71

Node-Link-Diagrams 2 [26, 44]

Similarity layout 1 [11]

Histogram 1 [35]

Table 4 Overview of categorization by Griin [25]

Category # Papers References

Deconvolution 24 [3,4,7,9, 12, 16, 26, 28, 35, 41, 45, 50, 52, 56, 61, 63, 64, 71,

72,81, 83, 84, 85]
Input modification 6 [44, 75,79, 80, 82, 86]

Input Reconstruction 4 [42, 46,47, 61]

3.2.1 Pixel displays

Most of the reviewed work has utilized pixel based activations as a means to visu-
alize different features and layers of deep neural networks. The basic idea behind
such visualization is that each pixel represents a data point. The color of the pixel
corresponds to an activation value, the maximum gradient w.r.t. to a given class, or a
reconstructed image. The different computational approaches for calculating maxi-
mum activations, sensitivity values or reconstructed images are not within the scope
of this chapter. We refer to the survey paper for feature visualizations in DNNs [25]
and provide a categorization of papers into Griin’s taxonomy in Table 4.
Mahendran & Vedaldi [46, 47] have visualized the information contained in the
image by using a process of inversion using optimized gradient descent function.
Visualizations are used to show the representations at each layer of the network
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(cf. Fig. 2). All the convolutional layers maintain photographically realistic repre-
sentations of the image. The first few layers are specific to the input images and
form a direct invertible code base. The fully connected layers represent data with
less geometry and instance specific information. Activation signals can thus be in-
vert back to images containing parts similar, but not identical to the original im-
ages. Cao et al. [4] have used pixel displays on complex, cluttered, single images
to visualize their results of CNNs with feedback. Nguyen et al. [52] developed an
algorithm to demonstrate that single neurons can represent multiple facets. Their
visualizations show the type of image features that activate specific neurons. A reg-
ularization method is also presented to determine the interpretability of the images
to maximize activation. The results suggest that synthesizing visualizations from
activated neurons better represent input images in terms of the overall structure and
color. Simonyan et al. [61] visualized data for deep convolutional networks. The first
visualization is a numerically generated image to maximize a classification score.
As second visualization, saliency maps for given pairs of images and classes in-
dicate influence of pixels from the input image on the respective class score, via
back-propagation.

convl pl nl conv2 p2 n2 conv3 conv4 convd p3 feB fc7 fc8 prob

0.48 mixing bowl

Fig. 2 Pixel based display. Activations of first convolutional layer generated with the DeepVis
toolboxfrom [80] from https://github.com/yosinski/deep-visualization-toolbox/.
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3.2.2 Heat Maps

In most cases, heat maps were used for visualizing the extend of feature activations
of specific network layers for various computer vision tasks (e.g. classification [82],
tracking [72], detection [84]). Heat maps have also been used to visualize the final
network output, e.g. the classifier probability [63, 82]. The heat map visualizations
are used to study the contributions of different network layers (e.g. [72]), compare
different methods (e.g., [50]) or investigate the DNNs inner features and results on
different input images [84]. Zintgraf et al. [86] used heat maps to visualize image
regions in favor of, as well as image regions against, a specific class in one im-
age. Authors use different color codings for their heat maps: blue-red-yellow color
schemes [72, 82, 84], white-red scheme [50], blue-white-red [86] and also a simple
grayscale highlighting interesting regions in white [63].

3.2.3 Confusion Matrix and Histogram

Two authors have shown the confusion matrix to illustrate the performance of the
DNN w.r.t. a classification task (see Figure 3). Bruckner et al. [3] additionally en-
coded the value in each cell using color (darker color represents higher values).
Thus, in this visualization dark off-diagonal spots correspond to large errors. In [7]
the encoding used is different: each cell value is additionally encoded by the size of
a square. Cells containing large squares represent large values; a large off-diagonal
square corresponds to a large error between two classes. Similarly, in one paper
histograms have been used to visualize the decision uncertainty of a classifier, indi-
cating using color whether the highest-probable class is the correct one [35].
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Fig. 3 Confusion Matrix example. Showing classification results for the COIL-20 data set. Screen-
shots reproduced with software from [59].

3.2.4 Similarity based layout

In the context of DNNSs, similarity based layouts so far have been applied only by
Donahue et al. [11], who specifically used t-distributed stochastic neighbor embed-
ding (t-SNE) [68] of feature representations. The authors projected feature represen-
tations of different networks layers into the 2-dimensional space and found a visible
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clustering for the higher layers in the network, but none for features of the lower
network layer. This finding corresponds to the general knowledge of the community
that higher levels learn semantic or high-level features. Further, based on the pro-
jection the authors could conclude that some feature representation is a good choice
for generalization to other (unseen) classes and how traditional features compare to
feature representations learned by deep architectures. Figure 4 provided an example
of the latter.

Fig. 4 Similarity based layout of the MNIST data set using raw features. Screenshot was taken
with a JavaScript implementation of t-SNE[67] https://scienceai.github.io/tsne-js/.

3.2.5 Node-Link Diagrams

Two authors have approach DNN visualization with node-link diagrams (see exam-
ples in Figure 5). In his interactive visualization approach, Adam Harley represented
layers in the neural networks as nodes using pixel displays, and activation levels as
edges [26]. Due to the denseness of connections in DNNs only active edges are vis-
ible. Users can draw input images for the network and interactively explore how the
DNN is trained. In CNNVis [44] nodes represent neuron clusters and are visualized
in different ways (e.g., activations) showing derived features for the clusters.
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Fig. 5 Node-link diagrams of DNNs. Top: Example from [26] taken with the online application at
http://scs.ryerson.ca/ aharley/vis/conv/. Bottom: screenshot of the CNNVis system [44] taken with
the online application at http://shixialiu.com/publications/cnnvis/demo/.

3.3 Network Architecture and Computer Vision Task

Table 5 provides a summary of the architecture types. The majority of papers applied
visualizations to CNN architectures (18 papers), while 8 papers dealt with the more
general case of DNNs. Only 8 papers have investigated more special architectures,
like DCNN (4 papers), DBNs (2 papers), CDBN (1 paper) and MCDNNSs (1 paper).

Table 6 summarizes the computer vision tasks for which the DNNs have been
trained. Most networks were trained for classification (14 papers), some for rep-
resentation learning and recognition (9 and 6 papers, respectively). Tracking and
Detection were pursued the least often.
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Table 5 Overview of network architecture types

Category # Papers References

CNN 18 [4,9, 12, 26,42, 44, 45, 46,47, 61,71, 72, 79, 81, 82, 83, 84, 85]
DNN 8 [l1,25,50, 52,56, 63,64, 80]

DCNN 4 [3,35,41, 86]

DBN 2 [16,75]

CDBN 1 [28]

MCDNN 1 [7]

Table 6 Overview of computer vision tasks

Category # Papers References

Classification 14 [3,9, 11, 35, 44, 45, 50, 56, 61, 80, 81, 82, 83, 86]
Representation learning 9 [12, 16, 25, 28, 41, 46, 47, 64, 79]

Recognition 6 [7, 26, 42,75, 84, 85]
Tracking 3 [4,52,72]
Detection 2 [63, 71]

3.4 Data Sets

Table 7 provides an overview of the data sets used in the reviewed papers. In the field
of classification and detection, the ImageNet dataset represent the most frequently
used dataset, used around 21 times. Other popular datasets used in tasks involving
detection and recognition such as Caltech101, Caltech256 etc. have been used 2-3
times (e.g. in [11, 56, 82, 85]).

While ImageNet and its subsets (e.g. ISLVRC) are large datasets with around
10,000,000 images each, there are smaller datasets such as the ETHZ stickmen
and VOC2010 which are generally used for fine-grained classification and learn-
ing. VOC2010, consisting of about 21,738 images, has been used twice, while more
specialized data sets, such as Buffy Stickmen for representation learning, have been
used only once in the reviewed papers [41]. There are datasets used in recognition
with fewer classes such as CIFAR10, consisting of 60,000 colour images, with about
10 classes; and MNIST used for recognition of handwritten digits.

4 Discussion

In this section we discuss the implications of the findings from the previous section
with respect to the research questions. We start the discussion by evaluating the
results for the stated research questions.

RQ-1 (Which insights can be gained about DNN models by means of visual-
ization) has been discussed along with the single papers in the previous section in
detail. We showed by examples which visualizations have previously been shown to
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Table 7 Overview of data sets sorted after their usage. Column "#” refers to the number of papers

in this survey using this data set.

Data Set Year #Images CV Task Comment # References
ImageNet [10] 2009 14,197,122 classification, tracking 21841 synsets 21 [80, 61, 56, 42, 47, 52, 86, 79, 4, 11,
72,35, 46, 25,82, 86,56,52,85,12,3]
ILSVRC2012 [55] 2015 1,200,000 1000 object categories 7 [52,47,56,46,3, 11, 35]
VOC2010 [18] 2010 21,738 detection, representation 50/50 train-test split 3 [63,47,45]
learning
Caltech-101 [19] 2006 9146 recognition, classification 101 categories 3 [85,82,11]
Places [85] 2014 2,500,000 classification, recognition 205 scene categories 2 [85,56]
Sun397 [77] 2010 130,519 classification, recognition 397 categories 2 [85,56]
Caltech256 [23] 2007 30,607 classification,recognition 256 categories 2 [85,82]
LFW [29] 2007 13,323 representation learning 5,749 faces, 6,000 pairs 2 [64,28]
MNIST [37] 1998 70,000 recognition 60,000 train, 10,000 test 10 classes, hand- 2 [16, 7]
written digits
DTD [6] 2014 5640 recognition 47 terms (categories) 1 [42]
ChaLearn LAP [17] 2014 47933 recognition RGB-D  gesture videos with 249 1 [75]
gestures  labels, each 249  for
train/testing/validation
SFC [64] 2014 4,400,000 representation learning photos of 4030 people 1 [64]
PASCAL3D+ [76] 2014 30899 detection 1 (711
FLIC [57] 2013 5003 representation learning 30 movies with person detector, 20% for 1 [40]
testing
Synchronic Activities 2012 357 representation learning upper-body annotations 1 [40]
Stickmen([15]
Buffy Stickmen [30] 2012 748 representation learning ground-truth stickmen annotations, anno- 1 [40]
tated video frames
SUNAttribute [54] 2012 14,000 recognition 700 categories 1 [85]
CASIA-HWDBI.1 [43] 2011 1,121,749  recognition 897,758 train, 223,991 test ,3755 classes, 1 [7]
chinese handwriting
GTSRB traffic sign 2011 50,000 recognition >40 classes, single-image, multi-class 1 [7]
dataset[62] classification
Caltech-UCSD Birds [69] 2011 11,788 classification 200 categories 1 [11]
YTF [74] 2011 3425 representation learning videos, subset of LFW 1 [64)
Stanford Action40 [78] 2011 9532 recognition 40 actions, 180-300 images per action 1 [85]
class
'WAF [14] 2010 525 representation learning downloaded via Google Image Search 1 [40]
LSP [31] 2010 2000 representation learning pose annotated images with 14 joint loca- 1 [40]
tion
ETHZ Stickmen [13] 2009 549 representation learning annotated by a 6-part stickman 1 [40]
CIFARI10 [34] 2009 60000 recognition 50000 training and 10000 test of 10 1 [7]
classes
EMD [60] 2009 1000 recognition 10 categories, 100 images per category 1 [42)
UIUC Event8 [39] 2007 1579 recognition sports event categories 1 [85]
KTH-T2b [5] 2005 4752 recognition 11 materials captured under controlled 1 [42]
scale, pose, and illumination
Scenel5 [20] 2005 4485 recognition 200 to 400 images per class of 15 class 1 [85]
scenes
NIST SD 19 [24] 1995 800000 recognition forms and digits 1 [7]

lead to which insights. For instance, visualizations are used to learn which features
are represented in which layer of a network or which part of the image a certain
node reacts to. Additionally, visualizing synthetic input images which maximize ac-
tivation allows to better understand how a network as a whole works. To strengthen
our point here, we additionally provide some quotes from authors:

Heat maps: “The visualisation method shows which pixels of a specific input image
are evidence for or against a node in the network.” [86]

Similarity layout: “[... ] first layers learn ‘low-level’ features, whereas the latter
layers learn semantic or ‘high-level’ features. [... | GIST or LLC fail to capture
the semantic difference [...]” [11]

Pixel Displays: “[...] representations on later convolutional layers tend to be
somewhat local, where channels correspond to specific, natural parts (e.g. wheels,
faces) instead of being dimensions in a completely distributed code. That said,
not all features correspond to natural parts [. .. ]” [80]
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Fig. 6 Relation of visualization goals and applied methods in the surveyed papers following our
taxonomy. Size of the circles corresponds to the (square root of the) number of papers in the
respective categories. For details on papers see Table 1.

The premise to use visualization is thus valid, as the publications agree that visu-
alizations help to understand the functionality and behavior of DNNs in computer
vision. This is especially true when investigating specific parts of the DNN.

To answer RQ-2 (Which visualization methods are appropriate for which kind of
insights?) we evaluated which visualizations were applied in the context of which
visualization goals. A summary is shown in figure 6. It can be seen that not all meth-
ods were used in combination with all goals, which is not surprising. For instance,
no publication used a similarity layout for assessing the architecture. This provides
hints on possibilities for further visualization experiments.

Pixel displays were prevalent for architecture assessment and general under-
standing. This is plausible since DNNs for computer vision work on the images
themselves. Thus, pixel displays preserve the spatial-context of the input data, mak-
ing the interpretation of the visualization straight-forward. This visualization, how-
ever, method has its own disadvantages and might not be the ideal choice in all
cases. The visualization design space is extremely limited, i.e. constrained to a sim-
ple color mapping. Especially for more complex research questions, extending this
space might be worthwhile, as the other visualization examples in this review show.

The fact that a method has not been used w.r.t. a certain goal does not necessarily
mean that it would not be appropriate. It merely means that authors so far achieved
their goal with a different kind of visualization. The results based on our taxonomy,
cf. Fig. 6 and Tab. 1, hint at corresponding white spots. For example, node-link
diagrams are well suited to visualize dependencies and relations. Such information
could be extracted for architecture assessment as well, depicting which input images
and activation levels correlate highly to activations within individual layers of the
network. Such a visualization will neither be trivial to create nor to use, since this
first three part correlation requires suitable hyper-graph visualization metaphor, but
the information basis is promising. Similar example ideas can be constructed for the
other white spots in Fig. 6 and beyond.
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5 Summary and Conclusion

In this chapter we surveyed visualizations of DNNs in the computer vision do-
main. Our leading questions were: “Which insights can be gained about DNN mod-
els by means of visualization?” and “Which visualization methods are appropriate
for which kind of insights?” A taxonomy containing the categories visualization
method, visualization goal, network architecture type, computer vision task and data
set was developed to structure the domain. We found that pixel displays were most
prominent among the methods, closely followed by heat maps. Both is not surpris-
ing, given that images (or image sequences) are the prevalent input data in computer
vision. Most of the developed visualizations and/or tools are expert tools, designed
for the usage of DNN/computer vision experts. We found no interactive visualiza-
tion allowing to integrate user feedback directly into the model. The closest ap-
proach is the semi-automatic CNNVis tool [44]. An interesting next step would be to
investigate which of the methods have been used in other application areas of DNNss,
such as speech recognition, where pixel displays are not the most straight-forward
visualization. It would be also interesting to see which visualization knowledge and
techniques could be successfully transferred between these application areas.
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