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Abstract—Breast cancer diagnosis is based on radiology
reports describing observations made from medical imagery,
such as X-rays obtained during mammography. The reports are
written by radiologists and contain a conclusion summarizing
the observations. Manually summarizing the reports is time-
consuming and leads to high text variability. This paper
investigates the automated summarization of Dutch radiology
reports. We propose a hybrid model consisting of a language
model (encoder-decoder with attention) and a separate BI-
RADS score classifier. The summarization model achieved a
ROUGE-L F1 score of 51.5% on the Dutch reports, which is
comparable to results in other languages and other domains.
For the BI-RADS classification, the language model (accuracy
79.1%) was outperformed by a separate classifier (accuracy
83.3%), leading us to propose a hybrid approach for radiology
report summarization. Our qualitative evaluation with experts
found the generated conclusions to be comprehensible and
to cover mostly relevant content, and the main focus for
improvement should be their factual correctness. While the
current model is not accurate enough to be employed in clinical
practice, our results indicate that hybrid models might be a
worthwhile direction for future research.

Keywords-Abstractive Summarization, Radiology Reports,
Breast Cancer, Deep Learning, Encoder-Decoder, Attention
Mechanism

I. INTRODUCTION

Mammography is one of the diagnostic tests performed for
diagnosing breast cancer and findings of these mammogra-
phy images along with findings from some other diagnostic
tests like ultrasound and magnetic resonance imaging (MRI)
are documented by radiologists in radiology reports. The
reports need to be clear and consistent so that the findings
can be easily understood by other physicians. The Breast
Imaging Reporting & Data System (BI-RADS) is used as
a standard in breast cancer reporting [1] specifying the
structure of the reports. Reports adhering to this standard
consist of clinical data, findings from the examinations as
well as a conclusion including a BI-RADS score (ranging

Original

Input sequence:

medische gegevens: via SVOB,
microcalcificaties R lateraal boven

verslag: matig beoordeelbaar dens klierweefsel
beiderzijds, microcalcificaties laterale
bovenkwadrant rechtermamma overgang
laterale onderkwadrant diameter 2,3 cm,
stellate laesies, echografisch onderzoek axilla
rechts laat geen pathologische lymfomen zien
Ground Truth Conclusion:

microcalcificaties in het laterale
bovenkwadrant van de rechtermamma, birads-
classificatie-iv, geen pathologische lymfomen
in de axilla

Generated Conclusion:

birads iv laesie in het laterale bovenkwadrant
van de rechtermamma waarvoor advies
stereotactische biopsie

English Translation

Input sequence:

clinical data: via SVOB, microcalcifications R
lateral upper

findings: The breasts are heterogeneously
dense on both sides, microcalcifications in the
lateral upper quadrant of the right breast at
the junction of the lateral lower quadrant.
Diameter 2.3 cm, stellate lesions. Ultrasound
of right axilla shows no pathological lymph
nodes.

Ground Truth Conclusion:

Microcalcifications in the lateral upper
quadrant of the right breast. BIRADS
classification IV. No pathological lymph nodes
in the axilla.

Generated Conclusion:

BIRADS IV lesion in the lateral upper quadrant
of the right breast requiring stereotactic

biopsy.

Figure 1. Example of a report containing the findings, the original and
generated conclusion of the EDA+BI-RADS model. Dutch on the left,
English translation on the right (Translated by a radiologist).

from O to 6, where 6 is the most severe malignancy). An
example report is shown in Figure 1. Radiologists write (or
dictate) these reports in free text, leading to variability of
the structure and writing quality of the reports. Besides, the
findings are often written during the examination, and it is
time-consuming to write a conclusion as patient data needs
to be consulted again. Therefore, a system for summarization
of the findings in the form of an automatic conclusion can
speed up the diagnostic process and contribute to human
error reduction and consistency of reports. Further, a system
that has learned the relationship between report content and
conclusion could be used for quality control and consistency
checks of radiology reporting in a hospital.

Although the BI-RADS standard [1] asks for a clear
structure, reports found in practice are partly unstructured,
do not consist of full sentences, and include typing errors [2].
Therefore, it is unclear to what extent existing automatic
summarization methods for general texts [3], [4] can result
in high-quality summaries on unstructured medical reports.
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MacAvaney et al. [5] applied a pointer-generator network
(PGN) [6] to generate the impression (summary) of English
radiology notes from a variety of imaging modalities. In
contrast to their summaries, our summaries should follow the
BI-RADS standard, which requires the summary to consist
of a classification (the BI-RADS score) and a concluding
sentence. In this paper, we compare a state-of-the-art sum-
marization method for generating the conclusion including
the BI-RADS score, and a hybrid model, where a text
classifier is used to predict the BI-RADS score separately,
which is then integrated into the summary produced by the
state-of-the-art summarization method.

More specifically, we use an encoder-decoder model with
attention (EDA) trained on Dutch radiology reports. This
model is compared to a baseline model without attention
(ED). Additionally, we investigate the prediction of the BI-
RADS score separately using classical text classification in
TF-IDF! vector space. We evaluate the summaries w.r.t.
ROUGE scores [7], the accuracy of the BI-RADS score in
the summary, and perform an expert evaluation to judge
the correctness, relevancy, and comprehensibility of the
generated reports. We found the hybrid model, which inserts
the BI-RADS score classification results in the abstractive
summaries, to outperform the pure summarization models
by 5% in the accuracy of BI-RADS score prediction. As
the BI-RADS score is the most important clue for subse-
quent treatment, our results indicate that a combination of
multiple models (classification and text summarization) is a
worthwhile direction for future research. The source code is
available on GitHub?.

The remainder of the paper is structured as follows.
Section II presents related work. Section III describes the
algorithms and data sets. Results are shown in Section IV
and discussed in Section V.

II. RELATED WORK

In this section, we discuss some existing works on BI-
RADS classification and automatic text summarization.

A. BI-RADS Score Classification

The majority of existing methods for the classification of
BI-RADS scores using natural language processing (NLP)
are rule-based and extract specific features. Sippo et al. [8]
presented an NLP-tool for BI-RADS score classification. It
determines the BI-RADS scores through regular expressions
and string matching of selected parts of the report after some
preprocessing of the text. Their study involved training and
testing their model on 1165 instances of data from a breast
imaging center in the United States and achieved an overall
F1 score of 98%.

Castro et al. [9] enhanced this approach by extracting
certain features such as imaging study type and laterality of

ITF: Term Frequency; IDF: Inverse Document Frequency
Zhttps://github.com/daphne12345/SummarizationRadiologyReports

the breast relevant for BI-RADS score classification. Their
best model using rules from partial decision trees was able
to achieve an overall F1 score of 91% trained and tested on
a larger dataset (2159 instances of data) of 18 hospitals in
Pittsburgh.

Banerjee et al. [10] proposed a semi-supervised NLP
pipeline for retrieving the BI-RADS score from mammog-
raphy reports. They used semantic dictionary mapping that
assigns the words in the reports to key terms. These should
capture the true semantics of the report and therefore fa-
cilitate better information extraction while keeping a low
dimensionality of information representation. They used a
logistic regression classifier, which achieved an overall F1
score of 89% on the classification task. Instead of extracting
specific features as in these works, we are using a generic
TF-IDF approach to determine important words as features.

B. Automatic Text Summarization

Text summarization is categorized into abstractive and
extractive methods. Our work uses abstractive summariza-
tion, which means that novel sentences are built from the
vocabulary. This method stands in contrast to extractive
summarization, which copies the most important sentences
from the input to generate a summary [11], [12].

There are different approaches to solve the task of ab-
stractive summarization. Most of them are based on deep
learning using sequence-to-sequence (seq2seq) models, that
are composed of an encoder and decoder. The encoder maps
the input to a context vector and the decoder generates the
summarized target sequence word-by-word. One of the first
works using seq2seq models for natural language generation
was done by Sutskever, Vinyals and Le [13]. Similar to their
work, we also use multilayered Long Short-Term Memory
(LSTM) in the encoder and decoder in our work. The method
is often further enhanced by using an attention mechanism
which was first introduced in [14]. The attention mechanism
considers the hidden state of the encoder and the decoder.
The learned weights tell the decoder the parts of the input
sequence to pay attention to produce the next word The first
studies applying seq2seq in combination with attention to the
task of summarization were Rush, Chopra and Weston [15],
and Nallapati et al. [4]. The dominant sequence transduction
models are based on the deep encoder-decoder structure with
attention [16]. The model used in our work also uses a
seq2seq model with attention.

In the biomedical domain, work has been focused on
enhancing current state-of-the-art (SOTA) models for ab-
stractive summarization with domain-specific knowledge.
Examples are summarization of biomedical publication ab-
stracts and electronic health reports [17], [18]. A recent
study [5] extended the PGN model with domain-specific
ontological information from existing medical ontologies
such as RadLex. The ontology-linked entities in the report
were provided as a separate context vector to the decoding
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Figure 2. Number of reports per BI-RADS score in the entire dataset

process. By including domain-specific knowledge, it was
found that the summaries from the extended models are
statistically better than the general SOTA models on radiol-
ogy corpora, achieving a ROUGE-L score of 37.02%. This
study illustrates the potential of abstractive summarization
in radiology to which our work is contributing.

In conclusion, there is not much work focusing on sum-
marizing Dutch medical reports and our work is among the
first to use a model similar to the state-of-the-art abstractive
summarization model [14] on Dutch radiology reports and
show some interesting insights in this direction.

III. DATA AND APPROACH

In this section, we describe our dataset and method for
automatic summarization of the radiology reports.

A. Data and Preprocessing

Our dataset comprises 47,158 breast cancer radiology
reports from the Ziekenhuis Groep Twente (ZGT), a hospital
in Hengelo, Netherlands, recorded between 2012 and 2018.
The reports are in Dutch and are written in free text. The
reports include clinical data (indication for this diagnostic
study including patient’s medical history), findings (clinical
findings from the diagnostic images - mammography, ultra-
sound and MRI) and conclusion (Final assessment including
a BI-RADS score) (see Figure 1). The clinical data and
findings are treated as the input sequence in the frame
of this work. This information usually indicates the breast
cancer severity (BI-RADS score) which is relevant for the
conclusion. The class (BI-RADS score) distribution in our
dataset shows that BI-RADS 2 is the majority class and BI-
RADS 0 is the minority class (cf. Figure 2).

For preprocessing the data, first, stop words are removed.
As we are dealing with a Dutch corpus, the Dutch stop
words from NLTK [19] were used for this task. A tokenizer
is used to create the vocabulary. For the conclusions, start
and end tokens are added. Secondly, each word in the
vocabulary is represented by an index. So, both findings and
conclusions are sequences of numbers. The maximum length
of the findings representing the input sequence is limited to

100 due to the availability of computational resources. The
maximum length of the conclusion is set to 32, to ensure
a reasonable length. This number was determined based on
the ratio of the median lengths of findings and conclusion
(46:12) x 100, plus a few words as a buffer. If the findings
and conclusions are shorter than 100 and 32 respectively,
they are padded with zeros. This represents the required
fixed length of the context vector given from encoder to
decoder.

For the BI-RADS classification, further preprocessing is
needed. The BI-RADS score needed to be extracted from the
given conclusions as they were not given in the dataset as a
separate attribute. The dataset contains data from different
radiologists which means that there is no common way
of reporting the BI-RADS score in the different reports.
Different number formats (i.e. 2, ii, twee) have been used.
Also, sometimes a word is inserted in between (e.g., “BI-
RADS rechts 2”) or it has been indicated differently (e.g.,
“BI-RADS classificatie 27, “BI-RADS-ii”’). We constructed
a set of rules for extracting all variants of the BI-RADS
scores.

B. Model

In this subsection, we will describe our 3 models - 1)
text summarization model (we compared a baseline encoder-
decoder model with an encoder-decoder-attention model), ii)
BI-RADS classification model, and iii) hybrid model (text
summarization + BI-RADS classification). The text summa-
rization models were used for generating the conclusion of
the radiology reports from the clinical data and findings in
the reports. To get a more accurate BI-RADS score (to be
included in the conclusion part of the report), a separate BI-
RADS classifier was trained. To have a combined model
that contains an accurate BI-RADS score and generated
conclusion, a hybrid model was created combining the power
of the above models. An overview picture of our model can
be found in Figure 3.

1) Encoder-Decoder (ED) (Baseline model): In abstrac-
tive text summarization, seq2seq models [13] are often
used mapping an input sequence to an output sequence of
different lengths using an encoder and a decoder. The input
sequence is passed through a word embedding layer which
maps the numerical input received from preprocessing to
embeddings. The embedding is given to the LSTM-based
encoder. The LSTM units gather information about the ele-
ments in the input sequence and propagate the information
forward in the sequence. The output of the encoder is the
context vector containing the encoder hidden state with a
fixed length, which serves as the initial hidden state of the
decoder, which is a representation of the target sequence.
The decoder also contains several LSTM units. The decoder
iterates through the context vector and predicts the next word
(the one with the highest probability) given the previous
word, and starting with a _START_ token. The sequence
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Figure 3.
on [6]) and BI-RADS classifier.

ends once the end token is predicted or the maximum
decoding length of 32 has been reached. This is done by
calculating the probability using softmax over all the words
in the vocabulary at each decoding step. The word in the
vocabulary with the largest probability is chosen as the
next decoded token. In Figure 3, the baseline ED model is
represented by the orange (encoder), yellow (decoder) and
green (output vocabulary distribution) parts present in the
part labeled 1.

2) Encoder-Decoder-Attention Model (EDA): The EDA
model differs from the ED model by the addition of an
attention layer [14], which allows the decoder to have access
to all hidden states of the encoder at each decoding step. In
the ED model, the context vector passed from the encoder
to the decoder has a fixed length and represents the result
of the last encoding unit. Thus, all previous hidden encoder
states are discarded. This leads to a disadvantage when using
seq2seq models, as longer sequences tend to be squeezed
into this fixed-length context vector and information can
be lost. The mechanism of attention [14] is intended to
solve this issue. It makes use of these states during the
decoding process. The hidden encoder states are attended to,
depending on the current state of the decoder. This means
that certain words of the input sequence are considered in
addition. The model assigns high attention scores to those
words of the input sequence that are relevant to the current
decoder step. In Figure 3, the part with label 1 shows the
EDA summarization model with an attention layer (indicated
in blue) added to the architecture of the ED model.

We illustrate the approach with an example summarization
step in Figure 3 using the example report of Figure 1.
Note that the words “pathologische” (pathological) and

Conclusion generation with hybrid model - combination of summarization model (Encoder-Decoder-Attention model) (Own diagram based

“lymfomen” (lymphoma) in the report receive higher at-
tention scores at the decoding step. In concatenation with
the context vector resulting from the encoder, this attention-
weighted context vector is fed to the next decoding unit,
which chooses “laesie” (lesion) as the next word from the
vocabulary. The blue part of Figure 3 shows the attention of
the example.

The architecture of the encoder in both ED and EDA
models consists of an input layer and three LSTM layers to
capture complex input whereas the decoder consists of an
LSTM layer, an attention layer, and a dense output layer.
All LSTM layers follow the default setting of tanh as
activation function and sigmotd as the input/output/forget
gate activation function. The implementation of the neural
network was mostly done with the library Keras [20]. The
attention layer from [14] was implemented.

3) BI-RADS Classification: The summarization model
is focused on the generation of text. A common problem
with language generation models is that they often do not
reproduce facts correctly. Therefore, a second model was
used which solely focuses on the correct prediction of the
most important fact: the BI-RADS score.

In essence, predicting the BI-RADS score from the clin-
ical data and findings is a text classification problem. We
use the common ‘bag of words’ approach where we use TF-
IDF [21] scores as the values for the word features. The TF-
IDF scores inform the classifier about the distinctiveness of
words. If a term (word) occurs in many documents (clinical
data + findings), it is not very distinctive for a class of
documents, thus it has a low TF-IDF. In contrast, if a word
only occurs in a few findings with a high frequency, it is
likely to be distinctive for that class and is quite informative,



thus it has a high TF-IDF. The TF-IDF matrix is generated
from clinical data and findings of a report and is passed
as an input feature to a traditional machine learning (ML)
classifier to predict the BI-RADS score, which can take any
categorical value in the range of 0-6. Figure 3 contains the
BI-RADS classifier (shown with label 2).

4) EDA+BI-RADS (Hybrid Model): The hybrid model
first uses the input sequence of clinical data and findings
to generate the conclusion using the best summarization
model. Then, the BI-RADS classifier predicts the BI-RADS
score based on the clinical data and the findings using the
classification pipeline. Finally, the BI-RADS score in the
generated conclusion of the summarization model is textu-
ally replaced by the prediction of the BI-RADS classifier.
Figure 3 shows how the hybrid model is formed (shown
with label 3). The output of the model can be seen in the
‘Hybrid Model Output’ on the right in the figure.?

C. Experimental Setup

The hybrid summarization and BI-RADS classifier model
is experimentally compared with the non-hybrid EDA and
ED baseline models. For training, hyper-parameter tuning,
and testing, the dataset has been divided into a train (70%),
validation (10%), and test (20%) set.

1) Summarization models: By summarization models, we
refer to both ED and EDA models. The model has been fitted
using early stopping to prevent over-fitting. The patience
parameter was set to 20 epochs to avoid stopping the training
prematurely at a local optimum. This means that only after
20 epochs of no improvement measured by loss on the
validation set, the training will be stopped. After early
stopping, the weights of the best epoch are restored. The
sparse-categorical-cross-entropy loss function as well as the
RMSprop optimizer have been applied. Sparse-categorical-
cross-entropy is appropriate as a loss function because the
problem at hand is a multi-class problem. The RMSprop
optimizer was chosen as it is known to deal well with mini-
batches during training, which is the case.

This configuration of the model has two hyper-parameters
that need tuning: Latent dimension, which is the number of
hidden units in an LSTM layer, and the batch size during
training. For latent dimensions, we used different values
roughly around the size of the input and output sequence,
which are 100 and 32 respectively. Hence, the following
values were used in tuning of the latent dimension: 60, 80,
100, 120. For the batch size, we decided on the values of
64, 128, 256, and 512 for hyper-parameter tuning. The batch
size should not be too small so that the model has enough
data to find patterns. It cannot be too large either because
the training time increases drastically. To cover the entire
parameter space, a grid search was performed.

3The summarization model always generates a BI-RADS score in its
conclusion.

2) BI-RADS Classification: We compared different multi-
class classifiers for BI-RADS classification: Support Vector
Machine (SVM), Logistic Regression, Ridge Classifier, Gra-
dient Boosted Trees, Random Forest, K-Nearest Neighbour
(KNN) and Multinomial Naive Bayes. We used the python
implementations in Scikit-Learn [22] and Xgboost [23].

3) Evaluation Metrics: We evaluated the generated con-
clusions quantitatively and qualitatively.

Quantitative: To assess the performance of the ED and
EDA models, ROUGE scores [7] are used. ROUGE scores
are measures used to evaluate the quality of texts to an ideal
reference text. A ROUGE-n score counts the numbers of
overlaps of respective n-grams between the reference and
the text at hand. High scores indicate a high overlap between
the prediction and reference and are therefore desirable. In
the frame of this work, the measures of precision, recall,
and F1 of ROUGE-1 (unigram), ROUGE-2 (bigram), and
ROUGE-L (longest common subsequence) are determined
between the reference conclusion from the test set and the
generated conclusion by using the py-rouge library [24].
Moreover, the generated conclusion is anticipated to provide
a BI-RADS score as well. Therefore, this score is extracted
and the accuracy of the BI-RADS score classification from
the summarization is reported as well. All ROUGE scores
and BI-RADS score prediction accuracy on the test set for

ED, EDA and BI-RADS classifiers are reported for 95%

confidence interval calculated using 1.96 W, where v

is the score or the accuracy value, N is the number of reports
in the test set and 1.96 is the z-score for 95% confidence.

The fine-tuning of the hyper-parameters is done on the
validation set. The three best performing combinations in
terms of ROUGE-L F1 are further evaluated on the test set.
For these models, the ROUGE-L F1 score and BI-RADS
accuracy are calculated. This is done to determine the best
hyperparameter combination of the summarization model
and validate the need for the separate BI-RADS classifier.
We chose the F1 score as it combines precision and recall.

For the evaluation of the BI-RADS classifier, each of the
pipelines with the different classifiers was trained on the
training set and evaluated on the validation and test set using
accuracy as a metric.

Qualitative: In addition to these metrics, a qualitative
evaluation is done with two radiologists of the ZGT hospital
in Hengelo, Netherlands. The objective of this evaluation
is to get an impression on whether the content is correct
(factual correctness of the information), relevant (medical
relevance of the content for the doctors) and comprehensible
(makes sense syntactically and semantically). For this, a
random sample of five pairs of original findings and its
generated conclusions are sent to the radiologists. Both the
radiologists discussed and rated the generated conclusions
together in terms of the 3 aforementioned criteria. Further-
more, they were asked to give free-text comments about each



Table I
EDA PERFORMANCE FOR DIFFERENT BATCH SIZES AND LATENT
DIMENSIONS ON THE TEST SET.

Batch Latent ROUGE-1 ROUGE-2 ROUGE-L
size dimension F1 F1 F1
128 120 0.540 0.388 0.515
64 100 0.531 0.381 0.508
64 120 0.526 0.377 0.503
conclusion.
IV. RESULTS

Table IV in Appendix A shows the performance of the
different models, resulting from the hyperparameter tuning
of the EDA model on the validation set. On evaluating the 3
best performing combinations of hyperparameters on the test
set, we found that batch size of 128 and latent dimension of
120 achieved the highest ROUGE-L F1 (cf. Table I). Our ED
and EDA models were trained on the best hyperparameters
and the resulting ROUGE scores are reported in Table II.
Our EDA model outperformed the baseline ED model by
around 0.7%, achieving a ROUGE-1 F1 score of 0.54, a
ROUGE-2 F1 score of 0.388, and a ROUGE-L F1 score of
0.515. However, the ED model achieved a 1% higher BI-
RADS score accuracy compared to the EDA model.

For the classification of the BI-RADS score, seven differ-
ent supervised learning methods were inserted in the pipeline
and then compared on the validation set. The accuracy of all
the classifiers on the validation set is shown in Table III. The
three best performing models (SVM, Logistic Regression
and Ridge classifier) were also compared on the test set and
the accuracy can be found in Table III. SVM classifier was
found to be the best performing BI-RADS classifier. The
BI-RADS classification accuracies from the ED and EDA
models are stated in Table II for comparison and it can be
seen that SVM outperforms the ED model by 4%.

We have also shown a generated conclusion from a fictive
report using our hybrid model in Figure 1 (shown both the
original Dutch report along with its English translation).
As can be seen, there are many common terms between
our generated conclusion and the ground truth conclusion,
e.g. ‘birads’, ‘iv’, ‘lateral’, ‘upper’, ‘quadrant’, ‘of’, ‘the’,
‘right’, ‘breast’. Figure 3 shows that the EDA model gener-
ated a wrong BI-RADS score of iii (three) in the generated
conclusion and the BI-RADS classifier predicted the BI-
RADS score correctly as iv (four). Therefore, in our hybrid
model output, replacing the BI-RADS score of iii from the
EDA model with the BI-RADS score of iv from the BI-
RADS classifier results in a correct BI-RADS score.

The results of the qualitative evaluation with the hospital
can be found in Figure 4. The five example reports had a
correctness of 40%, relevancy of 75%, and were 85% com-
prehensible. The comments from the radiologists indicated

Table 11
COMPARISON OF THE ED AND EDA MODELS FOR THE
SUMMARIZATION TASK ON THE TEST SET BASED ON ROUGE SCORE
AND BI-RADS ACCURACY REPORTED AT 95% CONFIDENCE INTERVAL.

Model ROUGE-1 ROUGE-2 ROUGE-L BI-RADS

ode F1 F1 F1 Accuracy

ED 0.5304+0.01  0.383+0.01  0.508+0.01  0.79140.01

EDA 0.5401+0.01 0.388+0.01 0.51540.01 0.78440.01
Table III

COMPARISON OF DIFFERENT BI-RADS CLASSIFIERS ON VALIDATION
AND TEST SET (TEST SET VALUES REPORTED AT 95% CONFIDENCE
INTERVAL). THE BASELINE IS AN ARTIFICIAL CLASSIFIER THAT ALWAYS
PREDICTS THE MAJORITY CLASS (BI-RADS SCORE 2).

Accuracy

Model Validation Test

SVM 0.837 0.833+0.01
Logistic Regression 0.817 0.81610.01
Ridge Classifier 0.797 0.79540.01
Gradient Boosted Trees 0.780 0.77940.01
Random Forest 0.773 0.768+0.01
KNN 0.696 0.69540.01
Multinomial Naive Bayes 0.670 0.675+0.01
Baseline Majority classifier 0.523 0.542

the problems in the generated conclusions, e.g. wrong breast
side and absence of the word “geen” (“no” in English) from
the findings. This leads to some of the conclusions meaning
the opposite of the intended sense.

V. DISCUSSION
A. Interpretation of results

In this work, we automatically generated conclusions of
Dutch radiology reports including a classification of the BI-
RADS score. This was done by combining a summarization
model (EDA) which generates the conclusion with a classi-
fication model. The hyperparameters of the EDA were tuned
and the best performing model with a ROUGE-L F1 score
of 0.515 has a batch size of 128 and a latent dimension
of 120. Interestingly, other parameter combinations were
performing better on the validation set. This could be due
to overfitting during training. The ROUGE-L score is the
most informative, as it combines the other two ROUGE
scores. The score is quite high in comparison to similar
works, such as [18] which also summarized medical data
and had a ROUGE-L score of 0.347 for the same model as
ours. Our significantly higher score on a similar task with
the same model is probably due to shorter input texts of
our dataset and less complexity. The SOTA summarization
model “T5” had a ROUGE-L score of 0.407 on their best
model [25]. Again, this difference can be explained with the
given dataset.

The comparison of the final EDA model to the ED
baseline model showed that the attention mechanism helps
to generate a slightly better conclusion. The ROUGE-L F1



0,
100% %
80% 75%

60%
40%

40%
0%
Correctness

Relevancy Comprehensibility

Figure 4. Hospital evaluation results. Average percentage of each generated
conclusion being correct, relevant and comprehensible based on the ratings.

score of the simple encoder-decoder model scores only 0.7%
lower. This rather small improvement could be explained
by the length of the findings, which are at maximum 100
tokens. A larger increase in performance could be expected
when longer sequences are passed as input. To quantify the
uncertainty of the scores, we reported the scores at 95%
confidence interval and we found the possibility of overlap in
the scores from these two models. Therefore, no conclusion
can be drawn on the question of whether or not attention
can be beneficial in the given summarization task.

The accuracy of the EDA model in predicting the BI-
RADS score was 78.4% as compared to the accuracy of
83.3% achieved by the separate BI-RADS classifier (SVM).
Thus, a 4% improvement in accuracy indicates that a sepa-
rate model for BI-RADS score classification is beneficial.

The ROUGE score only evaluates how well the generated
conclusion text matches the human conclusion text, but it
ignores several other important aspects of good conclusions
such as correctness, relevance of the content, and under-
standability. The results from the hospital evaluation suggest
that the generated conclusions are mostly factually incorrect
(e.g. wrong breast side, wrong imaging protocol) but still
cover relevant content and are comprehensible. We cannot
report the agreement between the radiologists because they
did the evaluation together and provided a combined score.
The high scores in relevance and comprehensibility suggest
that there is potential for an effective clinically usable
automatic summarization approach if the approach can be
improved on factual correctness.

While we have not used an explicit method to handle out-
of-vocabulary (OOV) words, e.g. copy mechanism, our sum-
marization model handles OOV words using the embedding
layer present after the input sequence. Whenever the model
encounters an OOV word, the embedding layer will find the
word’s closest meaningful representation in its vector space.

We adopted a neural text summarization model for the
task of summarizing radiology reports in the Dutch lan-
guage [14]. We refrained from using a more recent model,
e.g. the TS5 architecture [25], because of i) their computa-
tional intensity, and ii) the larger number of parameters that
need to be fit. There are no pre-trained models available
that are trained in medical Dutch, and our data set is

comparably small. We used a standard architecture for our
summarization task as our main objective was to test the
potential of summarizing Dutch medical reports and whether
a language model could learn to predict the BI-RADS score.
We see the hybrid model with separate BI-RADs prediction
as a solid baseline for future work.

B. Limitations

One of the complications of this work lies in the dataset.
As the dataset is in Dutch, other pretrained models for
abstractive summarization trained on English corpora could
not be used. Therefore, a new model needed to be built.
Additionally, the dataset encompasses real radiology reports
made by humans. This means that the possibility of human
errors in the dataset exists. The findings sometimes include
another BI-RADS score than the reported score in the
corresponding conclusion, which could mislead the model.
This could be either a previous score from medical history or
perhaps human error. Furthermore, the conclusions are also
written by humans, so if there are errors, they are learned
as well. Clinicians appear to have very diverse styles of
reporting [26], so it is not surprising that the model was
unable to find a standardized structure for the conclusions
as well.

The labels for the BI-RADS score were extracted from
the conclusions by looking for certain formats. We only
checked a sample of BI-RADS score extractions manually,
and cannot guarantee that our extracted labels are error-free.
Moreover, in some of the conclusions, no score could be
extracted because the phrasing was inconsistent and some
conclusions contained human errors. Due to the complexity
and variance of the underlying texts [26], neither a rule-
based nor a machine-learning based approach is likely to be
error-free.

The preprocessing eliminated stop words from the find-
ings which usually improves the performance of the model
because the model does not learn the context from irrelevant
words. The comments of the qualitative evaluation men-
tioned that the word “geen” (“no” in English) is sometimes
missing from the findings. Such words, should never be
removed as they negate the meaning of subsequent content.

A limitation of the proposed summarization model is that
it sometimes generates wrong facts: only two out of five
example reports evaluated by the hospital reviewers were
reported to contain correct content. Therefore, improving
factual correctness is an important direction for future work.

Additionally, the generated text of the current method
does not contain any grammar checks, so there is no guaran-
tee for correct sentences. However, the original conclusions
were also not written in full sentences.

Finally, the evaluation shows some limitations. Firstly, the
used ROUGE metric is not a metric for the quality of the
conclusion in terms of content. It assumes that the reference
conclusions from the dataset are the target, whereas this



might not always be the case. Secondly, the qualitative
evaluation with the radiologists from the hospital was done
on a very small scale. Therefore, the results are only to be
treated as an indicator for the conclusion quality in terms of
comprehensibility, correctness of information, and relevance
of content instead of a general result.

C. Future Work

To improve this work, future work can address the afore-
mentioned limitations. It could look at applying the model
on an English dataset, such as radiology reports within
the MIMIC III database [27]. This would give a statement
about the cross-lingual validity of the presented model. Also,
pretrained models in English could be fine-tuned to this
dataset to investigate transfer learning between languages.

Moreover, the summarization model can be improved by
extending the data preprocessing. By further looking at the
list of stop words, we might give the model some more
valuable information that could improve performance. The
introduction of a structure to the input report [2] and its
influence on the model could be investigated. In addition, the
model could be extended with more clinically relevant fea-
tures (e.g., breast size) to ensure relevant information in the
conclusion. These features could be identified in cooperation
with medical staff with the required domain knowledge. A
structure for the targeted conclusion could also be estab-
lished together with medical staff so that a standardized way
of reporting the conclusion can be automated. Additionally,
the use of domain-specific ontologies can be investigated for
feature extraction. Also, the conclusion could be checked for
grammar after generation. Furthermore, the summarization
model itself could be extended by the calculation of a
generation probability to build a PGN [6]. To improve the
accuracy of the BI-RADS score classifier, relevant features
such as breast composition could be considered. Moreover,
a neural network, solely used for the task of predicting the
BI-RADS score, might achieve higher accuracy.

In our hybrid model, we directly replace the BI-RADS
score of the EDA model with the BI-RADS score predicted
by the classifier. Future work could investigate a tighter
integration of the classifier and the language model, e.g.,
by employing multi-task learning strategies.

Future work could also improve on the evaluation methods
used in this study. As a ground truth for the BI-RADS
scores did not exist separately, we needed to extract it
ourselves. This ground truth was used for evaluation, so
future work would need to assess its validity. In general,
this work shows that there is a need for a more informative
evaluation metric than the current ROUGE metric which is
widely used for summarization tasks. Furthermore, a larger
scale qualitative evaluation could be done with radiologists,
in order to understand the applicability of the generated
conclusion better.

VI. CONCLUSION

In this work, a hybrid model (EDA+BI-RADS) was intro-
duced for the automatic generation of conclusions including
a BI-RADS score classification for medical findings of
Dutch breast cancer reports. An encoder-decoder model with
attention was combined with an SVM classifier for the
BI-RADS score which is a severity measure and part of
the conclusion. The combined model had a ROUGE-L F1
score of 51.5% and an accuracy of 83.3% on the prediction
of the BI-RADS score. The qualitative analysis showed
that the model can generate comprehensible and relevant
conclusions, while there is potential for improvement in the
area of factual correctness.
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APPENDIX A.
RESULTS OF HYPERPARAMETER TUNING

Table IV
ENCODER-DECODER WITH ATTENTION (EDA) MODEL PERFORMANCE FOR DIFFERENT BATCH SIZES AND LATENT DIMENSIONS ON THE VALIDATION
SET
Batch Latent BI-RADS ROUGE-L ROUGE-1 ROUGE-2
size dim. accuracy F1 Prec.  Recall F1 Prec.  Recall F1 Prec.  Recall
64 120 0.797 0519 0.712 0439 0542 0.742 0459 0395 0585  0.328
64 100 0.803 0.518 0.694 0446 0543 0.725 0467 0394 0.567 0.332
128 120 0.801 0.517 0.697 0440 0540 0.728 0461 0.392 0.568  0.328
64 60 0.793 0.514 0.702 0436 0537 0.731 0456 0389 0.569 0.324
128 80 0.796 0513  0.695 0439 0537 0725 0461 0.388 0.566 0.326
128 100 0.793 0513 0.703 0434 0537 0735 0455 0389 0574 0.323
256 120 0.788 0509 0.686 0435 0532 0716 0455 0383 0.555 0.321
128 60 0.773 0.508 0.683 0435 0531 0714 0456 0381 0.548 0.320
64 80 0.759 0.506  0.705 0426 0525 0.731 0443 0379 0.566 0.313
256 100 0.767 0.504 0.695 0428 0528 0.726 0449 0377 0.558 0.314
512 100 0.769 0502 0.692 0427 0525 0721 0446 0377 0.556 0.314
512 60 0.772 0.501 0.675 0429 0523 0.704 0449 0373 0.538 0.314
256 60 0.774 0.501 0.686 0424 0522 0713 0443 0374 0549 0311
512 120 0.768 0.500 0.662 0435 0523 0.691 0456 0371 0.528 0.316
256 80 0.782 0496 0.693 0419 0519 0722 0438 0369 0.555  0.305

512 80 0.750 0494 0.692 0415 0515 0720 0433 0365 0550 0.301




