

© EEXCESS consortium: all rights reserved

EEXCESSEEXCESSEEXCESSEEXCESS

Enhancing Europe’s eXchange in Cultural Enhancing Europe’s eXchange in Cultural Enhancing Europe’s eXchange in Cultural Enhancing Europe’s eXchange in Cultural
Educational and Scientific reSourcesEducational and Scientific reSourcesEducational and Scientific reSourcesEducational and Scientific reSources

Deliverable D5.4

Final Prototype on User Profile and

Context Detection, Usage Analysis

Methods and Services

Identifier: EEXCESS-D5.4-Final-Prototype-on-User-Profile-and-

Context-Detection-Usage-Analysis-Methods-and-Services-

final.pdf

Deliverable number: D5.4

Author(s) and company: Jörg Schlötterer (Uni Passau), Christin Seifert (Uni Passau),

Nils Witt (ZBW), Johannes Jurgovsky (Uni Passau), Stefan

Zwicklbauer (Uni Passau)

Internal reviewers: INSA

Work package / task: WP5, Task 5.1, 5.2 and 5.3

Document status: Final

Confidentiality: Public

Version 2016-05-30

1

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

© EEXCESS consortium: all rights reserved page ii

History

Version Date Reason of change

1 2016-04-30 First draft and structure created

2 2016-05-11 Structure revised

3 2016-05-17 Included entity disambiguation parts

4 2016-05-18 Integrated usage analysis

5 2016-05-19 Updated context detection

6 2016-05-20 Integrated resource mining

7 2016-05-23 Finalized overview, introduction and summary

7 2016-05-23 Version for internal review (INSA)

8 2016-05-30 Final Version

Impressum

Full project title: Enhancing Europe’s eXchange in Cultural Educational and Scientific reSources

Grant Agreement No: 600601

Workpackage Leader: Christin Seifert, Uni Passau

Project Co-ordinator: Silvia Russegger, JR-DIG

Scientific Project Leader: Michael Granitzer, Uni Passau

Acknowledgement: The research leading to these results has received funding from the European Union's

Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 600601.

Disclaimer: This document does not represent the opinion of the European Community, and the European

Community is not responsible for any use that might be made of its content.

This document contains material, which is the copyright of certain EEXCESS consortium parties, and may not be

reproduced or copied without permission. All EEXCESS consortium parties have agreed to full publication of

this document. The commercial use of any information contained in this document may require a license from

the proprietor of that information.

Neither the EEXCESS consortium as a whole, nor a certain party of the EEXCESS consortium warrant that the

information contained in this document is capable of use, nor that use of the information is free from risk, and

does not accept any liability for loss or damage suffered by any person using this information

2

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Contents

1 Executive Summary 5

2 Introduction 7

2.1 Purpose of this Document . 7

2.2 Scope of this Document . 7

2.3 Status of this Document . 7

2.4 Related Documents . 7

3 Overview 8

3.1 Publications . 8

4 Context Detection & Query Construction Concept 10

4.1 Detailed Context Detection and Query Construction per Granularity Level 10

4.1.1 Phrase Level . 11

4.1.2 Paragraph Level . 11

4.1.3 Page Level . 13

4.1.4 Session Level . 13

4.2 Entity and Category Detection . 14

4.2.1 Named Entity Annotation . 14

4.2.2 Category Annotation . 17

4.2.3 Main Topic Detection . 17

4.3 Keyword Extraction and Filtering . 18

4.3.1 Keyword Extraction . 18

4.3.2 Filtering and Personalization . 19

4.4 Embedded Context Detection . 20

4.5 Perfomance Evaluation . 20

4.5.1 Study Setup and Participants . 20

4.5.2 Paragraph Detection and Extraction . 21

4.5.3 Suitability of Main Topic . 21

4.5.4 Query Performance . 21

4.6 Summary . 22

5 Context Detection Library and Services 22

5.1 Software . 23

5.1.1 Source Code and License . 23

5.1.2 Installation and Usage . 24

6 Context Detection Prototype: Browser Extension 24

6.1 Source Code and License . 26

6.2 Installation and Usage . 26

7 Resource Mining 27

7.1 Corpora . 27

7.2 Prototypes . 28

7.3 Source Code and License . 34

8 Privacy-Preserving Usage Analysis Concept 36

8.1 Purpose . 36

8.2 Usage Data . 37

8.3 Privacy-Preserving Usage Analysis . 37

c© EEXCESS consortium: all rights reserved 3

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

9 Privacy-Preserving Usage Analysis Libraries 38

10 Privacy-Preserving Usage Analysis Component 39

11 Summary 40

12 References 42

A Appendix: Source Code Documentation 45

c© EEXCESS consortium: all rights reserved 4

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

1 Executive Summary

This deliverable describes the development and research related to user and usage mining. The work

can be grouped in 4 tasks:

• Develop client-side user mining libraries that can be re-used by clients using Web technologies
(JavaScript, HTML, CSS) (corresponds to Task 5.1 in DoW).

• Develop a feature-rich prototype using the context detection libraries, serving as test case for
end user testing and example for developers of other clients (corresponds to Task 5.1 in DoW).

• Develop a prototype for analyzing usage of EEXCESS resources. Due to the client-server architec-
ture of EEXCESS, this requires proper logging on the server as prerequisite (corresponds to Task

5.2 in DoW).

• Develop a prototype for mining of external resources (corresponds to Task 5.3 in DoW).

c4

Chrome
extension

DoSeR
services

LoggingAnalysis
GUI

Blogu
Analyser

Blogu
Crawler

Popularityu
Estimator

Figure 1: Overview of the main components developed in this work package. The green color indicates

the development focus since the last deliverable.

In terms of components, the libraries, services and prototypes shown in figure 1 have been devel-

oped. The source code of all components is available from Github https://github.com/EEXCESS/,
the README.md of each component describes its purpose, usage and the API if applicable.

C4 (sCientific and Cultural Content in Context) is a library encompassing all the context detection

modules. As previous experiments had shown that the information need in Web context is better

represented by a paragraph of a web site than the whole site, modules include paragraph detec-

tion and focus paragraph identification. For those paragraphs (but not limited to them), C4 pro-

vides capabilities to construct personalized queries. C4 exhibits wrappers for logging and disam-

biguation services (DoSeR). C4 is currently used by other clients, namely the Wordpress plugin, the

Moodle Plugin and the Wikipedia Reference Butler. Due to the restriction of the Google Add-on

store, the Google Docs add-on implements its own context detection functions. C4 is available from

Github http://purl.org/eexcess/components/c4.

DoSeR (Disambiguation of Semantic Resources) is a component for named entity disambiguation

and category assignment. It is the basis for the client-side query generation. DoSeR requires an entity

knowledge base, thus it is a server-side component with the service calls wrapped in C4. The source

code can be found at http://purl.org/eexcess/components/research/doser.

Chrome Extension The Chrome extension is one of the main EEXCESS end-user prototypes and the

most feature-rich w.r.t. context detection and personalization. The extension detects the paragraph of

interest on a web page, extracts the keywords, enables user adaptations to the query constructed from

these keywords, sends the query and presents the results. Personalization is implemented as query

pre-selection from a set of possible queries, based on previous queries. Mechanisms for learning on

c© EEXCESS consortium: all rights reserved 5

https://github.com/EEXCESS/
http://purl.org/eexcess/components/c4
http://purl.org/eexcess/components/research/doser

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

which page the extension should be switched on/off are also included. The extension is available in

the Chrome Web store http://purl.org/eexcess/clients/chrome-extension, and the source code
can be found on Github http://purl.org/eexcess/components/chrome-extension.

Logging has been implemented as a crucial prerequisite for the analysis of internal resource us-

age, and the development of the Analysis GUI. A client-side logging library has been developed for

the usage of all clients and is part of the C4 library. Concept and API definition have been done in

cooperation with work package 6, work package 5 has then focused on the implementation of the

client side logging. Based on the logging data, the Analysis GUI web interface provides means for

privacy-preserving usage analysis.

The Blog Crawler enables the data collection for external resource mining. The Blog Analyzer

for linking Blogs to EEXCESS enables the analysis of the collected data. The Popularity Estimator

estimates the popularity of scientific papers or blogs solely on the basis of their textual content. The

source code of the crawler and the analyzer is available from http://purl.org/eexcess/components/
research/blogcrawler and http://purl.org/eexcess/components/research/bloganalyzer re-

spectively. The source code of the popularity estimator is available from https://github.com/
n-witt/econstorModelling/blob/master/classifier.ipynb.

c© EEXCESS consortium: all rights reserved 6

http://purl.org/eexcess/clients/chrome-extension
http://purl.org/eexcess/components/chrome-extension
http://purl.org/eexcess/components/research/blogcrawler
http://purl.org/eexcess/components/research/blogcrawler
http://purl.org/eexcess/components/research/bloganalyzer
https://github.com/n-witt/econstorModelling/blob/master/classifier.ipynb
https://github.com/n-witt/econstorModelling/blob/master/classifier.ipynb

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

2 Introduction

2.1 Purpose of this Document

This deliverable describes the final prototype for the functionality described in Task 5.1, 5.2 and 5.3.

The source code for the prototype software components is available from open source repositories,

URLs for the repositories are given in the executive summary (section 1) and in the respective section

for each component.

2.2 Scope of this Document

This deliverable describes the software components for user and usage mining developed within work

package 5. The focus of this deliverable are the context detection functionalities used in various

clients, and the usage mining components. A prerequisite for analysis of internal usage mining is a

proper logging. Logging comprises of a client and a server part. The logging client libraries are de-

scribed in this deliverable, the server component is part of deliverable D6.4 [Mok+16]. The context

detection concept has been implemented in various prototypes, with a focus on the Chrome exten-

sion. The Chrome extension GUI is not described here, a guided tour can be found in deliverable D7.6

[Dop16b].

2.3 Status of this Document

This is the final version of D5.4.

2.4 Related Documents

D7.6 Final Prototype Integration and Deployment [Dop16b]

In detail the following section is of interest for the reader:

• Refer to section 3.2 for a guided tour of the prototype for context detection, the Chrome exten-
sion.

D6.4 Final Security Proxy Prototype and Reputation Protocols [Mok+16]

In detail the following section is of interest for the reader:

• Refer to section 6.2.2 for the logging server component.

D7.5 Second Evaluation Report Test Beds [Dop15]

In detail the following section is of interest for the reader:

• Refer to section 7 for the evaluation setup of the Chrome Extension Test Bed, including first
results.

c© EEXCESS consortium: all rights reserved 7

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

3 Overview

The work in this work package can be structured into work on (i) context detection and query construc-

tion for personalization, (ii) usage mining of external resources, and (iii) privacy-preserving usage-

mining of project-internal resources. This is in alignemt with the three tasks in the DoW.

This deliverable presents the conceptual idea for each of the tasks, as well as developed libraries

and prototypes. The following figure gives an overview of the structure of this deliverable:

Context Detection
&

Query Construction

Mining
External

Resources

Privacy-preserving
Usage Analysis of

Internal Resources

• concept in section 4 • concept in section 7.2 • concept in section 8
• libraries in section 5 • libraries in section 7.3 • libraries in section 9
• prototype in section 6 • prototype in section 7.2 • prototype in section 10

3.1 Publications

In WP5 the following publications have been accepted since the write-up of deliverable D5.3 [Sei+15]

or are under submission. A reference to the corresponding section in this document is provided for

the papers under submission. Accepted papers are referenced again in the respective sections of this

deliverable.

Under submission

• We submitted a paper presenting our query construction approach on paragraph level (c.f. sec-
tion 4) together with an evaluation and possible enhancements. In particular, we evaluated

the performance of automatically generated queries against the best possibly achievable per-

formance and the performance of user generated queries. The paper has been accepted as a

poster (instead of a full paper) at TPDL ’16, but at the time of writing this deliverable, we had

not decided whether to take this opportunity, as the notification arrived during the finalization

of this deliverable. The work is summarized in section 4.5.

• A paper was submitted to the TIR16 workshop dealing with the exploration of the document
embedding space. This is described in more detail in section 7.2

• A paper, describing the EEXCESS framework as a whole has been submitted. This paper includes
a description of the main components of context detection and query construction. The concept

is described in detail in section 4.

Accepted for publication

• In this paper, we present an approach to create interest profiles from Twitter followees (the
accounts a user follows) to eleviate the cold-start problem of personalization. We found that

7 out of 10 predicted interests are indeed relevant interests of the test users. An overview is

presented in section 4.3.2. We accepted the invitation to publish an extended version in the

ACM Applied Computing Review (to appear in fall issue).

Christoph Besel, Jörg Schlötterer, and Granizer Michael. “Inferring Semantic Interest

Profiles from Twitter Followees”. In: Proceedings of the 31th Annual ACM Symposium

on Applied Computing. SAC ’16. New York, NY, USA: ACM, 2016. DOI: 10 . 1145 /
2851613.2851819

c© EEXCESS consortium: all rights reserved 8

http://dx.doi.org/10.1145/2851613.2851819
http://dx.doi.org/10.1145/2851613.2851819

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

• In this paper, we propose DoSeR (Disambiguation of Semantic Resources), a (named) entity dis-
ambiguation framework that is knowledge-base-agnostic in terms of RDF (e.g. DBpedia) and

entity-annotated document knowledge bases (e.g. Wikipedia). Our framework automatically

generates semantic entity embeddings given one or multiple knowledge bases. In the following,

DoSeR accepts documents with a given set of surface forms as input and collectively links them

to an entity in a knowledge base with a graph-based approach. More details are presented in

section 4.2.1.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “DoSeR - A Knowledge-

Base-Agnostic Framework for Disambiguating Entities Using Semantic Embeddings”.

In: The Semantic Web. Latest Advances and New Domains - 13th European Semantic

Web Conference, ESWC 2016, Heraklion, Kreta, to appear. 2016

• In this paper, we propose a new collective, graph-based disambiguation algorithm utilizing se-
mantic entity and document embeddings for robust entity disambiguation. Our approach is also

able to abstain if no appropriate entity can be found for a specific surface form. Our evaluation

shows, that our approach achieves significantly (>5%) better results than all other publicly avail-

able disambiguation algorithms on 7 of 9 datasets without data set specific tuning. More details

are presented in section 4.2.1.

Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Robust and Collective

Entity Disambiguation through Semantic Embeddings”. In: Proceeding of the 39rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR 2016, Pisa, Italy, to appear. 2016

• In this paper, we investigated the memory efficiency and robustness of word embeddings. In
particular, we explored three methods for post-processing Skip-Gram word representations in

order to reduce their required memory while still representing words accurately. The work is

summarized in section 4.4.

Johannes Jurgovsky, Michael Granitzer, and Christin Seifert. “Evaluating Memory Effi-

ciency and Robustness of Word Embeddings”. In: Advances in Information Retrieval,

ECIR 2016, Padova, Italy. Springer International Publishing, 2016, pp. 200–211

c© EEXCESS consortium: all rights reserved 9

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

4 Context Detection & Query Construction Concept

In this section, we describe the general concept of context detection and the extraction of the relevant

parts from the context in order to generate a search query profile. The concept was first described in

[Sch15] and also in [Pas15]. In [Sei+15], a revised version was presented, which is again revised in this

document. Briefly summarized, the major revisions comprise the following:

• In addition to the session level (which now acts as a filter), the page level also serves as input for
the paragraph level.

• The information need on page level is expressed as the topic of the page.

• The information need detection on page level can be explicitly controlled by the user.

• The information need detection on paragraph level builds on the information need detection on
page level. It no longer accounts for the topical overlap with the user profile.

In the web environment, observable context dimensions encompass first of all the web pages vis-

ited and in addition information like the user’s location. As a proof of concept, we developed a mobile

application[Sch+15], which integrates multiple context dimensions. In the general concept, we focus

on the textual content of web pages as the primary source of contextual information. Further contex-

tual dimensions (like for example mouse position) are used as additional cues to identify, select and

filter relevant parts of the textual context.

We conduct a subdivision of the textual context into five levels of granularity (from fine-grained

to coarse): terms, phrases, paragraphs, pages and sessions. Due to different characteristics, each

of these levels requires its own treatment. We focus on the paragraph level and utilize more coarse-

grained levels as supportive input to this level. Further, the concepts and techniques for the paragraph

level are also applicable to the more fine-grained levels (terms and phrases). It is to note, that not all

clients implement each level and some clients require adaptations of individual steps, but this section

provides a comprehensive overview on the basic principles.

The goal of our context detection and query construction concept is to transform the user’s context

into a query profile for the federated recommender, in order to retrieve additional resources relevant

to the task at hand. Therefore, in accordance with the user-based information seeking model of

Marchionini and White [MW07], our steps towards a query profile consist of:

1. identifying the relevant context

2. recognizing an information need

3. expressing this information need (in terms of a query profile to the federated recommender)

Table 1 provides an overview of these three steps for the different levels of context granularity, which

will be detailed in the next section. We omitted the term level, since it is covered by our approach for

the phrase level by regarding terms as single term phrases.

4.1 Detailed Context Detection and Query Construction per Granularity Level

This section provides a detailed description of the relevant context identification, information need

recognition and information need expression for each context granularity level. As alreadymentioned,

we focus on the paragraph level, which is able to cover the phrase level as well and utilize the more

coarse-grained levels as supportive input. Even though the page and session level serve as supportive

features in the deployment, the presented concept also allows to construct queries on these levels.

c© EEXCESS consortium: all rights reserved 10

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Table 1: Context Detection & Query Construction Overview

context

granularity

level detection

method

information

need detection

information need

formulation

information need

representation

phrases text selection
TRUE

(for selection)

conditional random

field model
terms

paragraph
web browser

focus area

input from page

level + user

interaction

entity disambiguation

and selection

keyword detection

terms + entities

pages NONE
url & title

classification
main topic extraction entity

sessions

(sequence

of pages)

topic similarity

navigation

patterns

session clusters

main topic extraction

entity disambiguation

and selection

entities

categories (filter)

4.1.1 Phrase Level

The concept for the phrase level has not been modified since the last deliverable. Hence we simply

repeat its description here.

Relevant context identification The most accurate way to identify the phrase currently read by the

user is eye tracking - browser events, such as mouse movements or scroll position yield only

limited accuracy [HPW11]. Thus, we rely on explicit user interaction in this case, i.e. a text

selection, which is a strong indicator for reading focus [HPW11].

Information need recognition Given a text selection, we assume an information need implicitly.

Information need expression To gather ground truth data, we conducted an experiment, in which

we had users select arbitrary pieces of text in web pages and issue queries to find resources

relevant to that selection. It turned out, that most terms in the users’ queries were already

contained in the corresponding text selection. Given these results, we trained a conditional

random field model (CRF), to determine which terms of the selection should be used as query,

achieving almost 90% accuracy with 10-fold cross validation [SSG15].

We did not integrate the CRF into the deployment, but instead apply the same approach to text selec-

tions as for the paragraph level. This is due to the fact, that, though we can identify the terms of the

selection a user would utilize for a query with a high accuracy, we have no guarantee for a good query:

Terms not contained in the selection might be missing and terms incorrectly classified as relevant add

noise. Also, utilizing the same approach for paragraphs and user defined text selection makes the

query construction process consistent. Last but not least, the user generated query is not necessarily

the optimal query as we will show in section 4.5.

4.1.2 Paragraph Level

Relevant context identification In order to find the relevant paragraph in a web page (i.e. the para-

graph, the user is currently looking at), it is first necessary to distinguish between paragraphs

which convey actual information and irrelevant ones, such as navigational menus, advertise-

ments, etc. For this very first step, we favor a simple approach, in order to keep the computa-

tional effort low and the response times high. A heuristic, based on a fixed length threshold of

DOM text nodes already provided sufficient recognition performance, i.e. 84% of the paragraphs

are extracted correctly (c.f. 4.5). The heuristic does not depend on a particular page structure

and is applicable to arbitrary web pages without influencing the user experience in a negative

way.

c© EEXCESS consortium: all rights reserved 11

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Once the paragraphs are extracted, the next step is to determine the paragraph which is cur-

rently in the user’s focus. We developed an approach, that takes into account the size of the

paragraph, its position on the screen, the scroll position and the mouse position, as those have

been shown to be able to serve as indicators for reading focus [HPW11]. However, we discov-

ered that the selection process of this approach is not easily interpretable for users and prone

to unintentional focus switches. Therefore, we regard the topmost left paragraph as focused

unless the user explicitly changes the focused paragraph by clicking on it, which gives the user

more control and provides consistency. Still this simple approach provides reasonable detection

performance, i.e. 65% of the focus paragraphs are detected correctly (c.f. 4.5).

Information need recognition As a first indicator, we utilize the information need detection on page

level. If this detection neglects an information need, we neglect the information need on para-

graph level as well. This way, we follow a conservative approach, sacrificing to miss an existing

information need for unobtrusiveness: Even though there is no information need on page level,

there still might be an information need on paragraph level. However, the absence of an infor-

mation need on page level might be user-defined and hence acts as a veto. Consequently, the

automatic information need detection on page level should only neglect an information need if

the probability that no information need exists is really high. More details are provided in the

next section 4.1.3.

If a (potential) information need exists on page level and the user looks at a paragraph for a

certain amount of time or explicitly selects the paragraph, we assume an information need on

paragraph level. In addition, the notification about the availability of additional results for the

paragraph causes only a subtle change in the peripheral area of the display. Such changes

are not recognized by the user when concentrating on a task and are automatically recognized

when not concentrating on a task [YMK13]. With this approach, the results are presented in an

unobtrusive manner.

Information need expression With about 71% of search queries containing named enti-

ties [Guo+09] and named entities providing semantic meaning, named entities naturally render

themselves as good candidates for query profile construction. In order to avoid under- or over-

specified queries, we introduce the concept of a main topic for the query, which is defined as

the overall topic of the paragraph. Utilizing this main topic, queries in conjunctive normal form

of the following structure can be constructed:

("main topic") AND ("entity 1" OR "entity 2" OR ...)

The extraction of named entities and the main topic from a paragraph is described in detail in

section 4.2. The evaluation of the suitability of the main topic revealed, that using the topic of

the whole page instead of the paragraph’s main topic is the better choice for query construc-

tion. Details of the evaluation will be presented in section 4.5 and on the page topic in the next

section 4.1.3.

The amount of extracted entities extracted can still be large, especially for long paragraphs.

Therefore, it needs filtering, in order to provide precise results. A filtering mechanism, which

splits long paragraphs into sub-paragraphs and selects the sub-paragraph (and corresponding

query) with the highest overlap with the user profile is already in place. See section 4.3 for

details. A second mechanism, which filters the entities based on their frequency, position(s)

in the paragraph, similarity to the main topic and among each other, has been evaluated as a

research prototype (c.f. 4.5).

Furthermore, the named entity extraction may fail to find all relevant keywords in the paragraph

or even be unable to extract any entity. In particular, the named entity extraction is optimized

towards English or German text and we will not be able to cover all languages. Also, the compu-

tational effort makes it necessary to perform the extraction server-side, raising privacy issues.

Therefore, we integrated a client-side fallback solution. See section 4.3 for details.

c© EEXCESS consortium: all rights reserved 12

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

4.1.3 Page Level

Relevant context identification By design, only a single page can be the active page in a browser

window. We consider the active page relevant, even though this may not be true in the (rare)

situation of a split screen with several browser windows or tabs.

Information need recognition The information need recognition on page level is mainly controlled

by the user: She can decide whether to activate or deactivate EEXCESS on a particular. The latter

is a veto for an information need, while the former indicates a potential information need, which

is then used as first indicator for the more fine-grained levels. The user can decide between an

opt-in and an opt-out approach, i.e. she can de-activate EEXCESS in general and define excep-

tions or activate EEXCESS in general and also define exceptions. In the latter case, the automatic

information need recognition is active on pages which are not defined as inactive exceptions. On

these pages, it is the task of the recognition mechanism to decide whether a (potential) informa-

tion need exists or not. Currently, we assume a potential information need on all pages, except

for those, on which EEXCESS has been de-activated commonly by a large user group. Examples

for such cases are the Web-interface for Google Mail or Stackoverflow. We plan to enhance this

blacklisting approach by predicting a potential information need, or more precisely, its rejection,

by a classifier, based on page URL and title. Still, we do not have sufficient training data for such

a classifier.

Information need expression The topic of the page provides the main topic for the query structure

defined on paragraph level. In principle, this topic could be extracted with the same mechanism

as for a paragraph, with details provided in section 4.2. However, this extraction mechanism

raises performance issues: the extraction of named entities from the whole page takes too long.

Therefore, we utilize the paragraph’s main topic in the deployed version and are investigating

means to extract the page topic in a more efficient way. In this line, we see the page title as the

primary source of information. Unfortunately, this title often contains additional information,

not related to the page, which can be considered as noise, that has to be removed. For example,

in the title of the Wikipedia page about looms - "Loom - Wikipedia, the free encyclopedia", only

the term in front of the hyphen is relevant. Often this part is related to the provider of the page.

Therefore, in a first approach, we followed several links in the page and compared their titles

to the original title, removing equal parts from the original title. While this approach provided

good performance in extracting the relevant parts, it caused problems with the (browser) session

management on some pages and hence is not applicable.

4.1.4 Session Level

We describe the session level from a conceptual point of view for the sake of completeness, while

it has been implemented in the deployment to a minor extent. The implemented part comprises the

information need expression, used as a filter for the paragraph level (indicated in gray color in Table 1).

In the implementation, the whole browsing history is treated as a single large session.

Relevant context identification The relevant context of a session is a set of pages, which belong to

this session. The first indicator for session boundaries is the topical coherence of subsequently

visited pages. In some cases, this is not sufficient. For example the pages of a "reading on-

line news" session may have diverse topics, but still belong to the same session. Preliminary

experiments indicated that a small set of recurring sessions (such as the just mentioned "read-

ing online news") constitute the main part of a user’s browsing behaviour. This hypothesis is

supported by the finding that few sites account for the majority of visits in a user’s browsing

history [Obe+07]. Therefore, we plan to cluster the user’s visited pages by their frequency, in

order to identify features of recurring sessions.

Information need recognition Recurring sessions typically do not exhibit an information need per

se, as those are sessions such as "visiting institutional pages". Nevertheless, they still can exhibit

c© EEXCESS consortium: all rights reserved 13

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

an information need on page level or below. Consider again the "reading online news" example,

in which an information need in online news itself does not exist, but certainly in the topics of the

particular news articles. Hence, we neglect recurring sessions and focus on rare ones. Indicators

for an information need in the latter case are visits of a search engine in between other pages

or textual input to a search form field on an arbitrary page.

Information need expression The main topics from previously visited pages within a session can be

used to expand the query on paragraph level, i.e. they provide additional keyword candidates

for the right part of the query structure described in the paragraph level. As the topic extraction

for a page already happens on page level, those topics are readily available on the session level.

The information need expression on session level is used for filtering the queries on paragraph

level (indicated gray in Table 1). To this end, the categories associated with the entities of a

query, for which a user has viewed the results are stored in a user profile. On paragraph level,

the query with the highest overlap with this profile is selected as the query that is issued to the

federated recommender. Details are presented in section 4.3.2.

As mentioned above, in the deployment the whole browsing (or query) history is treated as a

single large session, while a more sophisticated approach could distinguish between a long- and

short-term profile. With a session detection approach in place, the categories of queries within

a session would make up the short-term profile and the categories of the whole query history

the long-term profile.

4.2 Entity and Category Detection

As detailed above, entities and categories are used for query generation and personalization. To

extract them from paragraphs we use our DoSeR-framework1. DoSeR offers a JSON REST interface

which performs the following tasks to a given text snippet:

• Named Entity Annotation

• Category Annotation

• Main topic Detection

Our algorithm processes the tasks in the given order and returns the response in JSON format. In the

following we briefly describe these tasks.

4.2.1 Named Entity Annotation

Named Entity Annotation relies on two important subtasks: (Named) Entity Recognition and (Named)

Entity Disambiguation. Entity recognition forms the first step of creating entity annotations. It iden-

tifies proper nouns (in the following denoted as surface forms) that can be linked to a semantic

meaning. The task of entity disambiguation establishes links between identified surface forms and

entities within a knowledge base (KB) and faces the problem of semantic ambiguity [ZSG15b].

In our work, we focused on robust entity disambiguation, where robustness is defined as achiev-

ing high accuracy on different KBs and over a large set of different domains. We first distinguished

between entity-centric KBs (i.e. DBpedia, YAGO3) and document-centric KBs (i.e. Wikipedia, CalbC).

In this context we identified three crucial and well-known properties of (specialized) disambiguation

systems [ZSG15a]. These are (i) entity context, i.e. the way entities are described, (ii) user data, i.e.

quantity and quality of externally disambiguated entities, and (iii) quantity and heterogeneity of enti-

ties to disambiguate, i.e. the number and size of different domains in a knowledge base. We analyzed

these properties with our ranking-based (Learning To Rank), publicly available disambiguation system

1http://purl.org/eexcess/components/research/doser

c© EEXCESS consortium: all rights reserved 14

http://purl.org/eexcess/components/research/doser

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

DoSeR (Disambiguation of Semantic Resources). Our evaluation reveals that the choice of entity con-

text that is used to attain the best disambiguation results strongly depends on the amount of available

user data. Additionally, we show that disambiguation accuracy decreases with large-scale and hetero-

geneous KBs. Overall, we suggest to use a federated approach of different entity contexts to maintain

the advantages of both approaches [ZSG15a].

While search-based, document-centric KBs perform excellent in specialized domains (i.e. biomed-

ical domain), the question remains how the quantity of annotated entities within documents and

the document count used for entity classification influence disambiguation results. Another open

question is whether disambiguation results hold true on more general knowledge data sets (e.g.

Wikipedia) [ZSG15c]. Our results indicate that search-based entity disambiguation with document-

centric (KB) performs poorly on general domains (i.e. Wikipedia). Additionally, the results show that

disambiguation accuracy increases when using short documents (e.g. Wikipedia paragraphs) instead

of long article pages.

In addition to KB properties that affect disambiguation accuracy in general, we focused on entity

disambiguation algorithms that provide high accuracy on different kinds of KBs (i.e. entity-centric

KBs, document-centric KBs and a combination between them) on various domains. These domains

are for example on short Twitter messages, web pages, news documents, encyclopedias, RSS-Feeds

etc. While most authors report to outperform other entity disambiguation algorithms on their KBs/-

domain/data set, they do not achieve comparable accuracy on other domains. So their approaches

could be considered as not being very robust against different types of data sets.

To tackle this problem, we first proposed how to easily generate semantic entity embeddings to

compute a state-of-the-art semantic entity similarity measurement between entities regardless of the

type of KBs available [ZSG16a]. Embeddings are n-dimensional vectors of concepts which describe the

similarities between these concepts via cosine similarity. To create these embeddings, we make use of

Word2Vec, a group of state-of-the-art, unsupervised algorithms to create word embeddings from (tex-

tual) documents initially presented by Mikolov et al [Mik+13]. However, we presented two algorithms

to create appropriate input corpora for Word2Vec given an entity-centric or document-centric KB. The

output corpora can be easily combined to leverage the information of multiple KBs. A simple, collec-

tive, graph-based entity disambiguation approach (in the following denoted as DoSeR_simple) reveals

that the proposed similarity measurement based on semantic embeddings achieves state-of-the-art

accuracy on entity-centric KBs (i.e. DBpedia and YAGO3) and document-centric KBs (i.e. Wikipedia),

despite ignoring the surface form surrounding context [ZSG16a]. Table 2 shows an overview of disam-

biguation results of DoSeR_simple and publicly-available state-of-the-art disambiguation approaches.

We evaluated the approach on various data sets from different domains, like tweets (e.g. Microposts-

2014 Test), news documents (e.g. MSNBC) and web (e.g. AIDA/CONLL-TestB).

Based on the DoSeR framework and the entity embeddings used in DoSeR_simple [ZSG16a], we ad-

ditionally proposed a new robust, collective and open-source state-of-the-art disambiguation system

that also leverages the surrounding context of the respective surface forms [ZSG16b] (in the follow-

ing denoted as DoSeR_advanced). Besides the entity embeddings created with Word2Vec [ZSG16a],

we also create entity-context embeddings with Doc2Vec, a modification of Word2Vec. Doc2Vec learns

fixed-length embeddings from variable-length pieces of texts like documents [LM14]. It addresses

some of the key weaknesses of bag-of-word models by incorporating more semantics and considering

the word order within a small context. Our Doc2Vec model is trained on an arbitrary entity-context

corpus (i.e. Wikipedia) yielding the entity-context embeddings, and the same model is later used to

generate the surface-form-context embeddings. The cosine similarity between both, entity-context

embeddings and surface-form-context embeddings denotes the contextual matching of the respec-

tive entity to the context of a surface form.

Given the semantic embeddings (i.e. entity embeddings generated with Word2Vec and entity-

context embeddings with Doc2Vec) and a disambiguation index containing entity definitions (e.g. la-

bels, typical surface forms etc), we create a disambiguation graph. This graph consists of nodes for all

entity candidates per surface form and one node, the topic node, that represents the current predom-

inant topic of already disambiguated entities. This topic node allows us to include a-priori information

c© EEXCESS consortium: all rights reserved 15

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Table 2: Micro-averaged F1 values of DoSeR_simple, DBpedia Spotlight, AIDA, WAT and Wikifier on

seven data sets.

Data set DoSeR DoSeR

(+Wiki)

Wikifier Spotlight AIDA WAT

ACE2004 0.681 0.864 0.824 0.713 0.741 0.800

AIDA/CONLL-TestB 0.597 0.722 0.776 0.593 0.806 0.843

AQUAINT 0.638 0.820 0.862 0.713 0.534 0.768

MSNBC 0.719 0.881 0.851 0.511 0.796 0.777

N3-Reuters 0.700 0.727 0.694 0.577 0.571 0.644

IITB 0.497 0.713 0.755 0.447 0.277 0.611

Microposts-2014 Test 0.469 0.639 0.586 0.623 0.412 0.595

Average 0.614 0.767 0.764 0.597 0.591 0.720

from previous steps into the structure of the graph. The edge weights are based on similarities be-

tween entity embeddings as well as similarities between entity-context embeddings and the surface

forms’ surrounding context [ZSG16b]. To compute the most likely entity (i.e. disambiguation result)

for each surface form based on the created disambiguation graph, we apply the PageRank algorithm.

PageRank is a well-researched, link-based ranking algorithm simulating a random walk on graphs and

reflecting the importance of each node. In the special case that no entity fits a query surface form,

our algorithm is able to abstain resulting in returning the pseudo-entity NIL. To significantly optimize

the performance we integrated a Semantic Embedding Candidate Filter that filters those entity candi-

dates that fit to the general topic described by the already disambiguated entities requiring at least 3

already assigned entities. The underlying assumption is, that all entities in a paragraph are somehow

topically related.

In an in-depth evaluation we compare DoSeR_advanced against other publicly-available state-of-

the-art disambiguation approaches (cf. Table 3) and a very strong Prior baseline which links surface

forms to the entities with the highest prior probability p(ei|m). It estimates the probability of seeing
an entity ei with a given surface form m. Overall, our approach disambiguates the entities highly
accurate and attains state-of-the-art or nearly state-of-the-art results on all nine data sets. Hence,

our approach is very well suited for all kinds of documents available in the web (e.g. tweets, news,

etc.). Further details to our disambiguation approaches can be found in [ZSG16a] for DoSeR_simple

and [ZSG16b] for DoSeR_advanced.

In term of disambiguation performance, our system has the advantage to accept multiple queries

in parallel, but is not yet optimized for high-performance disambiguation. For that reason, we apply

the Named Entity Recognition and Named Entity Disambiguation system DBpedia Spotlight2 instead

of DoSeR. DBpediaSpotlight is one of the first semantic approaches (2011) and constitutes an entity-

centric approach which is based upon DBpedia. Based on a vector-space representation of entities

and using the cosine similarity, this approach has a public available web service. A comparison of

disambiguation accuracy between DoSeR and DBpedia Spotlight is given in Table 2 and 3. The service

is able to recognize and disambiguate English and German language entities as determined in the

request. Furthermore, we detect dates in documents and treat them like normal entities.

2https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki

c© EEXCESS consortium: all rights reserved 16

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Table 3: Comparing micro-averaged F1 values of DoSeR_advanced, the prior probability baseline as

well as the publicly available entity disambiguation systems Wikifier, Spotlight, AIDA, Babelfy

and WAT on nine data sets.

Data Set DoSeR Prior Wikifier Spotlight AIDA Babelfy WAT

ACE2004 0.907 0.831 0.834 0.713 0.815 0.561 0.800

AIDA/CONLL-TestB 0.784 0.661 0.777 0.593 0.774 0.592 0.843

AQUAINT 0.842 0.803 0.862 0.713 0.532 0.652 0.768

DBpedia Spotlight 0.810 0.745 0.797 0.789 0.508 0.522 0.652

MSNBC 0.911 0.711 0.851 0.511 0.782 0.607 0.777

N3-Reuters128 0.850 0.700 0.703 0.577 0.596 0.534 0.644

IITB 0.741 0.711 0.766 0.447 0.270 0.470 0.611

Microposts-2014 Test 0.750 0.630 0.586 0.453 0.453 0.473 0.595

N3 RSS-500 0.751 0.678 0.732 0.622 0.716 0.630 0.682

Average 0.816 0.718 0.768 0.602 0.605 0.560 0.708

4.2.2 Category Annotation

Since we exclusively annotate English or German Wikipedia/DBpedia entities, DoSeR is able to create

the respective statistics of categories that are associated with the entities extracted in Section 4.2.1.

Given an entity, we extract a set of Categories3. After extracting all categories we create a category

distribution given all categories of the identified entities.

4.2.3 Main Topic Detection

We provide the following two possibilities to extract the main topic of a paragraph given the set of

extracted entities of Section 4.2.1: (i) Doc2Vec, and (ii) PageRank with Word2Vec. A couple of expert

users evaluated both approaches and concluded a superiority of the Doc2Vec approach. Another

important reason is that PageRank with Word2Vec relies on extracted entities with DBpedia Spotlight,

which might annotate incorrect entities. Thus, a topic extraction with PageRank with WordVec strongly

depends on the entity annotation quality. For those two reasons, we employed the Doc2Vec approach

as default topic detection method in the current implementation. We emphasize that the outcome

might differ after some iterations since the inference step produces slightly different vectors after

each step.

Doc2Vec (Default) Generally based on Word2Vec, Doc2Vec produces a vector given a sentence or

document (cf. Section 4.2.1). Hence, we use the entire input paragraph and infer a representative

vector given our Doc2Vec model created on the Wikipedia corpus. We compare this vector with the

vectors of the Wikipedia pages (entities) by computing the cosine similarity. The Wikipedia page (en-

tity) with the highest similarity to the input paragraph represents the main topic. To significantly

improve the performance we reduce the target entity set to those entities which have been annotated

in the given paragraph (cf. Section 4.2.1).

PageRank with Word2Vec In the PageRank with Word2Vec approach, we create a fully-connected,

undirected weighted graph with entities extracted from a paragraph being the nodes. Each edge

3http://purl.org/dc/terms/subject

c© EEXCESS consortium: all rights reserved 17

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

describes the semantic similarity between two nodes. In our work the semantic similarity is the cosine

similarity between the entities n-dimensional vectors. To create these vectors we use word2vec which

generally takes a text corpus as input and produces word vectors as output. In our special case we use

a corpus comprising entities only. When using the PageRank algorithm on the given graph we simulate

a random walk on the graph. The node with the highest PageRank score represents the entity with the

highest importance within the paragraph. Hence, the highest ranked entity represents our main topic.

4.3 Keyword Extraction and Filtering

Named entities extracted by the approach presented in the previous section 4.2 build the basis for

our query term candidates. However, two problems can occur when using named entities:

1. The named entity extraction may fail to extract all relevant entities or even fail to extract relevant

entities

2. The named entity extraction may extract too many entities

The first problem can be attributed to the coverage of the underlying knowledge base: If an entity

is not represented in the knowledge base, it can obviously not be extracted. Moreover, the entity

extraction is optimized towards a specific language. Currently, we provide support for English and

German text. While further languages might be added by integrating the respective knowledge bases,

we are not able to cover all languages. Therefore, a language agnostic fallback solution is desirable.

We refer to this fallback as keyword extraction and present our approach in the next section 4.3.1.

Regarding the second problem of extracting too many entities, we need to apply filtering, in order

to restrict the query terms to the most relevant (for the user). This filtering step is also required for

the keyword extraction. The filtering step is described in section 4.3.2.

4.3.1 Keyword Extraction

For the keyword extraction, we evaluated standard keyword extraction techniques, like the pure term

frequency, tf-idf, BM25 and TextRank [MT04]. To this end, we developed a browser extension4 for

Google Chrome and Mozilla Firefox. This browser extension extracts keywords with the aforemen-

tioned techniques from web pages and presents the top 5 to the user, who than can evaluate, whether

those keywords are relevant to her on that page or not. The pure frequency of terms in a document

is the most simple measure, but requires stopword filtering. TextRank requires a pre-processing step,

assigning Part-of-Speech (POS) tags, which is language dependent. Tf-idf and BM25 can be used lan-

guage independent and by design filter stopwords automatically (words that occur in every document

in the corpus get assigned less weight). However, the two last mentioned techniques require a doc-

ument corpus, which we obtain from the browsing history. We vary the amount of browsing history

taken into account, by either accounting for browsing history until installation of the extension, brows-

ing history from the installation of the extension or the combination of both. For the browsing history

part until the installation, the pages in the user’s history are crawled to build the document corpus.

The crawled pages do not necessarily resemble the pages the user has seen, as we remove the pa-

rameter parts from the URL, in order to avoid undesirable repetition of actions. For example, the URL

might be the confirmation of a shopping step and we need to avoid placing such an order again. Also

session information might not be available anymore. Keywords extracted with different approaches

are presented to the user without telling her, which approach has been used.

The results (629 ratings from 26 users) vote for TextRank as the best performing approach with an

accuracy around 0.66. The best language independent approach is tf-idf, with an accuracy around

0.60. For these measurements, the accuracy of tf-idf and BM25 has been averaged across different

corpus sizes, i.e. the amount of browsing history taken into account. In detail, accounting for the

browsing history since installation performs worst (0.57), followed by the browsing history up to the

4http://mics.fim.uni-passau.de/serverREL/RELEVANTICO/intro/en.html

c© EEXCESS consortium: all rights reserved 18

http://mics.fim.uni-passau.de/serverREL/RELEVANTICO/intro/en.html

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

installation (0.59). Accounting for the whole history performs best (0.64) but still worse than TextRank

(0.66). Hence we opted for TextRank.

TextRank achieves the best performance, when the terms are filtered for nouns and adjectives,

while filtering for nouns is also possible. Omitting this pre-processing step leads to significantly lower

performance [MT04]. For the extraction of noun phrases, we developed NounPhraseJS5 a JavaScript

noun phrase detection, which can be executed on the client-side. NounPhraseJS achieves a classifica-

tion rate of 94.8% on the CoNLL-2000 shared task dataset [TB00] with a training/test split of 80/20. In

addition, we applied NounPhraseJS to date extraction, as alternative for the date extraction provided

by DoSer (c.f. section 4.2.1). For this task, the WikiWars dataset [MD10] has been used and up to

98.9% of the terms have been correctly classified as temporal or non-temporal expression. While this

approach can be executed client-side, it requires labeled data for the training. Hence, it also faces the

problem of language dependance. To overcome the language dependance, we apply a heuristic based

on the case sensitivity of terms. Of course, such a heuristic provides lower performance than sophis-

ticated POS-tagging. Nevertheless, we decided for TextRank together with this heuristic, as building

the document corpus in the other language independent approaches can raise performance issues,

especially when the browsing history grows large. Furthermore, the heuristic in the pre-processing

step can be easily replaced by sophisticated POS-tagging for particular languages.

4.3.2 Filtering and Personalization

All of the presented approaches provide the ability to filter the query candidates by their weight and

use only the top-k for the query. For those approaches, that do not assign a weight directly to the

terms, the term frequency can be used as weight as a simple approach. However, the term frequency

does not account for user specific needs, i.e. the query candidates are not personalized. Also, the

quality of the filtering step depends on the parameter k, which is set to 10 for the TextRank approach.

Regarding the named entities, we filter the query candidates based on a user profile. This user

profile consists of categories assigned to entities in past queries. The categories provide a more ab-

stract level than the entities themselves. With this more abstract representation, the user profile is

a representation of the user’s interests. Since queries are created and sent automatically, we need

to make sure, that the user is indeed interested in the categories in the profile. Therefore, we only

add those categories to the profile, where the user has viewed the result set of the corresponding

query. The filtering step is applied in the following way: We subdivide large paragraphs into smaller

sub-paragraphs and extract the entities of each sub-paragraph separately. Hence we have different

query sets for each sub-paragraph. The query set with the highest overlap in terms of categories in

the user profile is then pre-selected and issued. Still the user can select another sub-query or issue

the query for the whole paragraph.

With using only categories for the user profile, where the user has viewed the result set of a query

constructed of the corresponding entities, a certain set of queries needs to be executed to fill the

user profile: The approach suffers from a coldstart problem. We follow two strategies to overcome

this limitation: On the one hand, we, provide the ability for the user to explicitly state her interest in

Wikipedia top-level categories and will spread this interest two lower categories. On the other hand,

we aim to provide the possibility to fill the user interest profile by utilizing a user’s already existing

social media network account. We investigated the second strategy, using Twitter as external source,

and found that 7 out of 10 detected interests were indeed relevant for the test users. This approach

also provides the possibility to just provide a Twitter account name, without the need for credentials.

Hence, it could also be used by users that do not maintain a Twitter account themselves, but know a

person with similar interests, who is on Twitter: They can simple use the Twitter name of this account.

The possibility to explicitly state interests has already been integrated into the deployment, while the

second strategy is available as standalone prototype.

5https://github.com/EEXCESS/NounPhraseJS

c© EEXCESS consortium: all rights reserved 19

https://github.com/EEXCESS/NounPhraseJS

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

4.4 Embedded Context Detection

The embedded context detection has not been modified since the last deliverable. Hence, we simply

repeat its description in this section in order for this document to be self-contained.

Achieving high classification accuracy on Natural Language Processing (NLP) tasks (e.g., POS-tagging,

noun phrase detection) often relies on expressive representations for words. It has been shown that

unsupervisedly learned Word2Vec word representations (word vectors), estimated from large text cor-

pora, improve the accuracy on many NLP tasks through their high-quality features. However, these

word vectors must be computed in advance, i.e. before they can be used within a NLP classification

task. Once computed they provide a certain degree of accuracy boost but also require a lot of memory

(60-150 MB) to be stored.

We were curious if we could exploit the benefits of these word vectors also for memory limited appli-

cations. Since there is little known about the robustness of word vectors against parameter pertur-

bations and about their efficiency in preserving word similarities under memory constraints. In our

work, we investigate three post-processing methods for word vectors to study their robustness and

memory efficiency. We employ a dimensionality-based, a parameter-based and a resolution-based

method to obtain parameter-reduced vectors and we provided a concept that connects the three ap-

proaches. We contrasted these methods with the relative accuracy loss on six intrinsic evaluation

tasks and compared them with regard to the memory efficiency of the reduced vectors. The evalu-

ation showed that the quality of PCA-reduced word vectors is, for some tasks, superior to vectors of

equivalent size and that low Bit-resolution word vectors offer great potential for memory savings by

alleviating the risk of accuracy loss

In particular, we could reduce the total memory requirement of these word representations by 75%

without significant accuracy loss on several evaluation tasks. The results indicate that post-processed

word vectors could also enhance applications on resource limited devices with valuable word fea-

tures. More details on the compression methods and evaluation results can be found in the publica-

tion [JGS16].

4.5 Perfomance Evaluation

We evaluated the performance of the context identification and information need expression step on

paragraph level as described in section 4.1.2 with a user study. In particular, this evaluation com-

prised the extraction and detection of the focused paragraph, the suitability of the main topic (see

also section 4.2.3) and the performance of the constructed queries. Also, we investigated additional

methods to filter the extracted named entities based on the evaluation data.

4.5.1 Study Setup and Participants

We used a modified version of the chrome extension for the study. The modifications comprised the

inclusion of appropriate logging mechanisms and the removal of components, which were not rele-

vant to the evaluation (e.g. additional visualizations). Participants were instructed to choose from a

set of Wikipedia pages and navigate to a particular section on these pages. The focused paragraph was

selected and highlighted automatically. If the participant disagreed with this selection, she was asked

to modify it accordingly. Afterwards, an automatic query was generated and issued and participants

had to rate the results. Then they were asked to adapt the query and again rate the results until they

either arrived at perfect results, did not deem the search engine able to deliver appropriate results or

a timeout was met. More details of the study setup can be found in deliverable [Dop16a]. In that de-

liverable, we reported first results of the study for 27 participants. Meanwhile, 77 university students

took part in the study and the results reported here are based on the data of all those participants.

The evaluation was carried out on a cleaned dataset, e.g. we removed queries, were no rating has

been given or paragraphs and associated queries from pages other than the predefined ones.

c© EEXCESS consortium: all rights reserved 20

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

4.5.2 Paragraph Detection and Extraction

The evaluation of the focused paragraph comprises two steps: First, the extraction of paragraphs (sep-

arating actual paragraphs from navigational menus, advertisements, etc.) and second the detection

of the focused paragraph on the set of extracted paragraphs. Whenever a participant did not modify

the extracted paragraphs, we considered them as correctly extracted. This was the case for 84% of

the paragraphs, i.e. those paragraphs were extracted correctly or meaningful from a user perspective.

From the set of correctly extracted paragraphs, the focused paragraph was detected correctly in 65%

of the cases, i.e. participants did not modify its pre-selection.

4.5.3 Suitability of Main Topic

We consider the suggested main topic as suitable, if it was not modified by the user or a modification

did not lead to an improved result set (in terms of relevance ratings). This results in a main topic fit

of 83%. However, in some cases, the query has not been modified at all. This can be due to the user

being already perfectly satisfied with the results of the automatic query or not being able to modify

the query due to time constraints for example. After removing the cases, where we cannot make a

definitive statement about the main topic quality (i.e., we do not know the reason, why it has not been

modified), the remaining fit is still at 79%.

As the evaluation was carried out on Wikipedia pages and the extracted main topic is represented

by a Wikipedia article title, we can easily compare the extracted main topic of the paragraph with

the topic of the page. In 103 queries, both were the same. Moreover, the suggested main topic was

different from the page topic in 81% of the queries where the main topic has been changed and the

change resulted in an improvement in 63%. Also, the page topic was set as new main topic of the

query in 25% of the main topic modifications. These findings suggest that the topic of the page is

better suited for the query than the (extracted) topic of the paragraph.

4.5.4 Query Performance

We compared the performance of the automatically constructed queries with the best queries, users

were able to formulate. Further, we evaluated the performance of the best achievable queries. To

this end, we set up an own search index with all the results retrieved during the study. To find the

best queries, in principle, we issued queries with all possible combinations of the extracted entities

against our own index. We also evaluated the performance of the automatic and user queries on

this index. Based on the best achievable queries, we trained a decision tree classifier, to filter the

extracted named entities of automatic queries. The F1-scores of the different approaches are depicted

in Table 4. The reason for the performance drop of the filtered and best queries on the original index

Table 4: Comparison of automatic, user, best and filtered queries on our own and the original index.

own index original index

best automatic filtered user best automatic filtered user

F1-score 0.49 0.31 0.33 0.35 0.21 0.24 0.15 0.31

is, that those queries yield new results, which were not obtained during the study. These results might

actually be relevant, but as we do not have ratings available, and hence cannot judge the relevance, we

treat all of them as not relevant. The evaluation shows a low performance in general, but this a factor,

we cannot influence directly (for the evaluation, we obtained results from the search APIs of Mendeley

and Europeana directly, without using the federated recommender). However, the performance of the

automatic queries is not far below the best queries users were able to formulate. When accounting

for all queries issued by the users, the performance of the user queries also drops. By taking the best

query, a user was able to formulate, this query could in fact also be an automatic query, in case the

user was not able to formulate a better performing query (in terms of F1-score).

c© EEXCESS consortium: all rights reserved 21

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

4.6 Summary

Table 5 summarizes, which components we implemented and integrated into the EEXCESS framework,

which components we implemented and made available as standalone prototype, and which compo-

nents we implemented as a research prototype.

Table 5: Overview of implemented prototypes.

Implemented and integrated into the EEXCESS framework

Paragraph extraction Available in the context detection library (c.f. section 5)

Focused paragraph

detection

Available in the context detection library (c.f. section 5)

Named entity extraction Available server-side (c.f. section 4.2)

Main topic extraction Available server-side (c.f. section 4.2)

Keyword extraction via

TextRank

Available in the context detection library (c.f. section 5)

Query personalization Available in the context detection library (c.f. section 5)

Implemented and available as standalone prototype

NounPhraseJS Client-side extraction of noun phrases

Embedded context

detection

Compression of Word2Vec vectors

Twitter interest profile

construction

Construction of interest profiles from Twitter followees

Implemented as research prototype

Client-side CRF Query generation on phrase level

Query candidates

filtering

Limit the set of query candidates

5 Context Detection Library and Services

Research and development in the context detection task lead to i) a client-side context detection li-

brary, and ii) a service for annotating entities and categories. Although several sub-modules and

additional features were added, there have not been any changes on the architectural level, nor on

the source code locations or installation procedures. Hence, this section is a repetition from the last

deliverable D5.3 [Sei+15].

Client-Side Modules In this section, we start with an overview on the organization of the different

client-side modules, in order for the reader to get the whole picture and then provide details for the

context detection software. Figure 2 depicts the main components and their interplay. Basically, we

have two module types: the components in C4 (Cultural and sCientific Content in Context) and Visu-

alization Widgets. The latter comprise components, which do not need to be aware of the web page

context. They are provided as self-contained web sites, which communicate with their environment

via the Web Messaging API 6. The main advantage of providing those widgets as self-contained pages

and including them as iframes is that they do not inherit any layout definitions of the including page.

Further, they do not add any elements to the including page (except the iframe itself) and hence are

6https://w3c.github.io/webmessaging/

c© EEXCESS consortium: all rights reserved 22

https://w3c.github.io/webmessaging/

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Figure 2: Overview of the client-side modules

not prone to be affected by element modifications in that page. Also, developers who include these

widgets do not need to care about their internals, but only send (and listen for) a well-defined set of

messages. This set of messages is provided in the Appendix on page 63.

C4 comprises components, which either provide functions without any display elements (or at least

only a small amount) or need a tight connection to the including web page. The parts relevant to

this deliverable all reside in C4. In addition to the existing and planned context detection modules

mentioned in the previous section 4.6, C4 features utility modules for server connections (for query

requests, named entity extraction, logging) and window messaging, a module to create ready-to-use

citations from JSON metadata and a module for adding a search bar to the bottom of a page, that

allows interaction with the query. Details for the available modules and how to use them are provided

in the Appendix on page 50.

Entity-Services To detect entities and categories of paragraphs we use the DoSeR framework (Dis-

ambiguation of Semantic Resources). DoSeR offers rest interfaces to annotate textual or tabular data

with semantic annotations. The EEXCESS project uses the entity and category annotations interface

to perform the following tasks: Named Entity Annotation, Category Annotation and Main topic Detec-

tion. In order to detect the main topics of paragraphs, we apply word2vec/doc2vec which relies on a

Word2Vec Rest server. The REST Server is an important component in the DoSeR framework. Details

for the available services and how to use them are provided in the appendix on pages 48 and 46.

5.1 Software

• Client-side context detection features such as the extraction of paragraphs and detection of
the active paragraph are available in the C4 package. This package also includes utility (server

connections) and augmentation tools (search bar, citation tool).

⇒ API description and usage details in the appendix on page 50.

• Server-side semantic enrichment of paragraphs with entities and categories is performed in
DoSeR. DoSeR also provides several tools to investigate the underlying data (e.g. tables).

⇒ API description and usage details in the appendix on pages 46 and 48.

5.1.1 Source Code and License

• The source code of the C4 libraries is available on GitHub http://purl.org/eexcess/
components/c4. The libraries are published under MIT license7.

• The source code of DoSeR is available on GitHub http://purl.org/eexcess/components/
research/doser. The DoSeR library is published under GNU GENERAL PUBLIC license 28.

7http://opensource.org/licenses/MIT
8http://opensource.org/licenses/GPL-2.0

c© EEXCESS consortium: all rights reserved 23

http://purl.org/eexcess/components/c4
http://purl.org/eexcess/components/c4
http://purl.org/eexcess/components/research/doser
http://purl.org/eexcess/components/research/doser
http://opensource.org/licenses/MIT
http://opensource.org/licenses/GPL-2.0

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

5.1.2 Installation and Usage

• C4 is available as bower9 package. Hence it can conveniently be installed via “bower install c4”,
which will load all the necessary files and dependencies. After installation, the desired modules

can be included by providing “c4/<module_name>” to the require statement of RequireJS10.

⇒ API description and usage details in the appendix on page 50.

• DoSeR is a stand-alone Java library which starts an Apache Tomcat webserver. In order to work
correctly it is necessary to download the doc2vec model as well as DBpediaSpotlight.

⇒ The download links and in-detail installation guides are given in the respective readme files
in the appendix on pages 48 and 46.

6 Context Detection Prototype: Browser Extension

As an example for the usage of the context detection library, we describe the feature-richest proto-

type, which is the Chrome browser extension. The chrome extension implements the context detec-

tion and query construction as described in section 4 to the full extent. In other clients, the modules

are used analogous, but partially to a lesser extent. We start with an updated description of the inter-

face, while we repeat the architecture, source code location and installation from the last deliverable

D5.3 [Sei+15], as the latter did not change since then.

A screenshot of the extension on the Wikipedia page about Ada Lovelace is shown in figure 3. The

paragraphs which are surrounded by a dotted gray border have been extracted from the page by

the extension. The green border indicates the focused paragraph. This paragraph contains four sub-

paragraphs and hence, four sub-queries have been created via named entity detection from those

four sub-paragraphs. The query term candidates (i.e. the sub-query) with the highest overlap of

corresponding categories with the user profile are shown at the bottom of the page. They have been

used to send a query to the EEXCESS federated recommender (via the privacy proxy). The number

of returned results is indicated in the lower right corner. The possibility to change the sub-query

is by the selection menu at the bottom left: Further sub-queries are indicated by their main-topic

and selectable by the user. Further, the possibility to use all extracted entities from the paragraph

is provided, as well as filtering the query for persons or/and locations. The popup in the upper right

contains the de-/activation mechanisms and links to a feedback form and the option, profile and help

page. A guided tour of the Chrome extension is provided in Deliverable D7.6 [Dop16b, section 3.2].

Figure 4 provides an overview of the extension architecture. It is composed of three main parts

(web page environment, local extension and global extension environment), which will be detailed in

the following.

9http://bower.io/
10http://requirejs.org/

c© EEXCESS consortium: all rights reserved 24

http://bower.io/
http://requirejs.org/

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Figure 3: Screenshot of the Chrome extension with extracted paragraphs (outlined in light gray), fo-

cused paragraph (outlined in green), extracted keywords (bottom), result indicator (bottom

right above the EEXCESS icon), filter menu (bottom left) and options popup (upper right).

Figure 4: Browser extension architecture.

c© EEXCESS consortium: all rights reserved 25

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Local extension environment The visualization widgets reside in the local extension environment.

This is similar to a regular web page environment, but instead of being accessible under some url

like http://<domain_name>, the widgets are accessible at chrome-extension://<extension_ID>.

This means, they behave like a regular web page. For example, when the same widget would

be added to a web page in two different iframes, each frame would have a separate execution

environment. Hence, the execution environment for the widgets is temporary. The widgets

communicate with the content script via the web messaging API, e.g. the content script might

send a message about new results and the widgets would display those results.

Global extension environment The background script is a single, permanent script in global execu-

tion environment. Hence it can store and share information across tabs, like past queries for

example. The background script is responsible for the connection to the privacy proxy. There-

fore, it makes use of APIconnector module of the C4 package. Before it sends a query request to

the privacy proxy, it enriches the query profile provided by the content script by additional long

term user profile information.

Web page environment The content script in the web page environment has two tasks: context de-

tection within the page and augmentation of the page. For the latter, it adds the searchBar

module of C4 to the page. This module displays a bar at the bottom of the page, which in-

forms about new results and allows interaction with the query and corresponding results (via

visualization widgets). By default, the searchBar directly queries the privacy proxy via the API-

connector module, while the content script provides a custom query function to the searchBar,

which routes the query through the background script. This is necessary in order to be able to

keep track of past queries and enrich the query with additional user profile features.

Regarding the context detection, the content script first extracts the paragraphs of the web page

via the paragraphDetection module of C4 and tracks the focused paragaph via functionality pro-

vided by the same module. Whenever a focused paragraph is detected, an according event will

be thrown with the paragraph attached and the content script retrieves the query terms for this

paragraph via the paragraphToQuery method, also provided in the paragraphDetection module.

This methods in turn retrieves the query terms via a REST call to the DoSer framework. Once the

query terms are available, the content scripts instructs the searchBar to display them and the

searchBar in turn will trigger the provided query function.

6.1 Source Code and License

The source code of the EEXCESS Chrome browser extension is available from github http://purl.
org/eexcess/components/chrome-extension. The extension is published under MIT license11.

6.2 Installation and Usage

The ready-to-use version of the Chrome extension can be installed from the Chrome webstore by

visiting http://purl.org/eexcess/clients/chrome-extension with a supported browser (Chrome
or Chromium).

To setup the Chrome extension for development, you first need to checkout the source code. Af-

terwards, you need to run “npm install” to load the required node modules (requires node.js12). The

final step to load all dependencies is to run “bower install”. Once you have completed these three

steps, navigate to “chrome://extensions” in your Chrome browser, activate the developer mode and

then you will be able to add the extension via “load an unpacked extension”.

11http://opensource.org/licenses/MIT
12https://nodejs.org/en/

c© EEXCESS consortium: all rights reserved 26

http://purl.org/eexcess/components/chrome-extension
http://purl.org/eexcess/components/chrome-extension
http://purl.org/eexcess/clients/chrome-extension
http://opensource.org/licenses/MIT
https://nodejs.org/en/

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

7 Resource Mining

In this section the resource mining activities will be summarized. Since the research and develop-

ment was fragmented into two different parts, this section will be structured accordingly. Firstly, the

creation of data corpora (i.e. the aggregation of real world data) will be depicted in subsection 7.1.

Secondly, the experiments that were conducted using the corpora will be described in subsection 7.2.

We will end this section by aggregating the references to the source code repositories and license

information in subsection 7.3.

7.1 Corpora

Over the course of the project two corpora have been created:

• Blogs15. A corpus that consists of over 80.000 blog post, which was introduced in [Sei+14].

• Econstor16. A new corpus containing nearly 100.000 research papers from the field of eco-
nomics, which will be described in this section.

This section recapitulates Blog15 and introduces Econstor16, a new corpus, which hasn’t been ex-

plained earlier.

Blogs15

Blogs15 contains 80.000 blog posts from 10 different blogs. Those 10 blogs where selected by their

relevance in the field of economics as well as technical and legal aspects (e.g. some blogs disallow web

crawlering or suppress such efforts technically). A web crawler (called Blog-Crawler) was developed

to visit those websites automatically and download the desired information into a database. Further

details are specified in [Sei+14] Section 9.2.1.

Econstor16

Econstor16 is based on ZBWs13 open access service Econstor14 which is among the largest open access

repositories in the field economics. Besides the plaintext of the documents and along with the usual

meta information like author, title and publication year there are several other useful information like

the number of citations a paper received, language, link to the original PDF file, author assigned key-

word and keywords assigned by domain experts from a controlled vocabulary (see STW15). Moreover,

there are Econbiz16 identifiers as well as RePEc17 identifiers that allow fetching further information

from other services. To date (May 2016), Econstor serves 108,000 documents to the users. But not all

of them allow plaintext extraction (using encryption), which reduces the size of the corpus to 96,000.

Since the repository is rapidly growing, this number will keep increasing. Figure 5 illustrates the length

of the documents.

The bulk has less than 10,000 words. 77% of the documents are written in English, 19% in Ger-

man. The remaining 4% are composed out of over 20 languages. The code that created this corpus

consists of two components, a downloading component and a Corpus Pre-Processor, which will be

described in more detail in the following section.

13http://www.zbw.eu
14http://econstor.eu/
15http://zbw.eu/stw/version/latest/about
16http://www.econbiz.de/
17http://repec.org/

c© EEXCESS consortium: all rights reserved 27

http://www.zbw.eu
http://econstor.eu/
http://zbw.eu/stw/version/latest/about
http://www.econbiz.de/
http://repec.org/

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Figure 5: A histogram depicting the length of the documents in Econstor16. The red line marks the

mean length of 6476 words per document.

7.2 Prototypes

We have developed five prototype applications, which we first summarize briefly and then explain in

detail in this section.

• The Blog-Crawler was used to create the Blogs15 corpus as already described before. Hence we
do not provide an additional description in this section.

• The Blog-Analyzer is a fuzzy-matching tool that searches a corpus of text data for PDF links and
tries to find them on EconBiz, which allows to retrieve further meta information.

• The Corpus Pre-Processor extracts text contained in PDF files, normalizes, filters and stores
them in a parallel fashion.

• After doing supervised training the Popularity Estimator predicts the whether or not a writing
will be popular.

• The Semantic Relatedness and Explanation Tool is a means to explore the semantical differ-
ences between two documents. It generates a list of words that, when "added" or "subtracted"

to one document, approximate the other.

Blog-Analyzer

The Blog-Analyzer searches the database for links to PDF files and matches those to EconBiz files. This

allowed us to find blog posts that mentioned documents from EconBiz. This prototype was already

described in more detail in [Sei+14].

Corpus Pre-Processor

As a prerequiste for the Corpus Pre-Processor, we developed a downloading component. The task

of the downloading component is to compile the desired information from three different sources

and store them into JSON files. Most information is retrieved from the Econbiz-API18. This includes,

among other, authors, title, hyperlink to the PDF document and the publication year. In order to

obtain citation count information we used the CitEc19-API which is a service hosted by RePEc. This

18https://api.econbiz.de/doc
19http://citec.repec.org/

c© EEXCESS consortium: all rights reserved 28

https://api.econbiz.de/doc
http://citec.repec.org/

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

service provides information on how many resources are cited by a paper, how many times was a

paper cited and by which papers was it cited. Moreover, we fetched document annotations from the

STW service. They were assigned by domain experts and try to reflect the content of a document.

The task of the Corpus Pre-Processor is then threefold:

1. Plaintext extraction. Based on the pdfminer20 library, a framework was build, that extracts text

from PDF files. This processes is computationally intensive. Therefore, computation is done in a

parallel fashion (using Pythons multiprocessing infrastructure and the pypy interpreter.

2. Language guessing. The language of a document is often crucial for textmining tasks. Hence,

we employed the Python library langdetect21 to detect the language of the documents.

3. Text normalization. Since the resulting plaintexts from pdfminer are of varying quality, a pre-
processing step detects common errors and fixes them. It also discards the cover page (which is

the first page in every document from Econstor).

The Corpus Pre-Processor extracts plaintext from the PDF files and merges it with a corresponding

JSON file. Extracting plaintext from PDF files is not a straightforward process. Encoding problems,

password-protected files and a large variety of text formattings are only a few of the potential prob-

lems. To mitigate some of these problems a filter module is used to correct some of the common

errors. Using regular expressions, it can be easily adapt to other scenarios. Further, the Corpus Pre-

Processor adds the guessed language to the JSON file as well. The processing can be interrupt at any

stage of the process, as the program writes checkpoint files every 30 seconds that allows it to resume

the processing.

Popularity Estimator

Estimating the relevance of documents is often used for recommendation systems. These estimations

often rely on citations graphs, author networks or other meta information about the items. We, in

contrast, during our work on this prototype focused on the text itself, ignoring meta information.

Our approach is based on Document Embeddings [DOL15], which is an algorithm that can be thought

of as being a semantic hash algorithm. Likewise conventional hash algorithm, it does assign a fixed

length value to an arbitrary long text. But on the contrary, it assigns documents with similar semantic

and syntactic properties to nearby locations. This means that the distance between two documents

characterizes their similarity.

The purpose of this prototype is to estimate the relevance of a document merely through its Doc-

uments Embedding representation, using corpopra like the one described in section 7.1 (The exper-

iment described in this section is based on the Ecostor16 corpus). The setup that is used is outlined

in figure 8. The first step transforms the plaintext of the documents into their Document Embeddings

(the n-dimensional vector), which is subsequently used to train a classifier (in the figure, a simple feed

forward network is used, but other classifiers work likewise) in a supervised fashion. In order to do

supervised training, popularity indicating labels are required (e.g. citation counts, Altmetrics, monthly

reader and so forth). The labels that we used for the training were derived from the citation count

information of the Econstor16 corpus. If a document was cited at least once, it was assigned the label

"high impact" and "low impact" otherwise. The threshold of one or more was chosen, because it splits

the corpus into two approximately equally-sized parts.

Once the training is completed, the classifier can be used to predict the popularity of documents

that haven’t been used for training.

For classification we evaluated three different classifiers: Random Forrest, Support Vectors Machine

and Feed Forward Neuronal Networks. Both, Random Forrest and Support Vector Machines achieved

a prediction accuracy of 66% whereas the Neuronal Network achieved 68%. For all classifiers we ex-

plored their respective hyperparameter space. This is exemplified for the Neuronal Network classifier

20https://pypi.python.org/pypi/pdfminer/
21https://pypi.python.org/pypi/langdetect/1.0.5

c© EEXCESS consortium: all rights reserved 29

https://pypi.python.org/pypi/pdfminer/
https://pypi.python.org/pypi/langdetect/1.0.5

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Table 6: Hyperparameter space exploration of the classifier

Input Dimension Dropout NN Architecture Accuracy Rank

600 0.6 (500, 160) 68% 1

600 0.6 (250, 80) 67.5% 2

600 0.6 (100) 67.4% 3

600 0.6 (400, 150, 40) 67.3% 4

...

300 0.4 (300) 67.2% 8

...

100 0.6 (250, 80) 66% 21

in table6. The table shows three hyperparameters (Input Dimension, Dropout, NN Architecture), the

prediction accuracy as well as the rank of the result. The prediction accuracy obviously benefits from

more input dimensions. A Dropout [Hin+12] propability of 0.6 increased the prediction accuracy when

compared to 0.4. However, higher values lead to declining results. What the table also show is, that,

although Dropout was used, shallow networks performed better than deeper ons. This indicated that

the training data contained insufficient variance. Plotting the input vectors (using t-SNE [HS06] for

Figure 6: t-SNE visualization of 10.000 documents. Red dots indicate ’High Impact’, blue dots indicate

’Low Impact’

dimensionality reduction), we can also see that it is hard to tell the two classes apart, although a slight

tendency towards ’High Impact’ documents can be observed on the on the leftmost part of the figure.

This observation is also supported by figure 7 which depicts the train and the validation Cross Entropy

loss during training. The crucial observation here is, that train and validation loss start deviating after

only a few training iterations. This means, that the classifier’s performance keeps increasing on the

training set while stagnating on the validation set. This is a clear sign of overfitting. Although the clas-

sifier used only content-features (semantic embeddings of documents), and no network features like

citations graphs, an accuracy of 68% could be achieved (trivial classifier 50%). This means, content-

features are informative for impact estimation, however we hypothesize that network features could

further contribute to the performance.

c© EEXCESS consortium: all rights reserved 30

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Figure 7: Cross entropy loss of the most accurate classifier

Figure 8: Citation Count Estimator

Semantic Relatedness and Explanation

The capability of having words that explain the difference between two documents is a rather useful

tool. For instance, in a recommendation scenario a user may be interested in documents that are

similar to a document at hand but with a specific topical shift. By specifying another document,

the user could retrieve the documents of interest. In a scenario where similar documents are to be

compared (e.g. annual reports) such an algorithm can give a brief overview. In the context of EEXCESS

such a tool may be used as a means to create a semantical path among a document collection.

Word and document embeddings have gained a lot of attention recently, because the tend to work

well in text mining tasks. Yet, they elude the humans intuition. This experiment made the attempt

to explain the arithmetic difference between two document embeddings by a series of word embed-

dings. This is possible, because Document and Word Vectors exist in the same space and have the

vector length. Hence, mathematical operations are feasible. We developed an algorithm that iter-

atively picked words from a vocabulary in order to close the topical gap between the documents.

Although not all words that were found were great matches, the algorithm is able to find sets of words

that are reasonable to a human that read both documents. Remarkably, some of the well-explaining

words are mentioned in neither documents.

c© EEXCESS consortium: all rights reserved 31

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Algorithm

The intuition behind the idea is as follows. Assuming we are given two documents (d1 and d2) and their
corresponding Document Vectors (DocV ec(d1), DocV ec(d2)) as well as the Word Embedding model
that was used to generate the Document Embeddings. Then, each document- and each word-vector

represents a position in the vector space. Since we can do simple arithmetic operation, we can ask the

question: Which Word Vector (WordV ec(wa)) maximizes dist(DocV ec(d1), DocV ec(d2))? Where dist is
some distance measure. Subsequently we can repeat this process by minimizing dist(DocV ec(d1) +
WordV ec(wa), DocV ec(d2)). This can be repeated until a convergence criteria is satisfied. Finally we
have a path that describes the topical distance between two documents. More formally, this algorithm

can be described as follows:

Algorithm 1 Document Vector Approximation

1: function DOCVECAPPROX(model, doc1, doc2)
2: path← list()
3: X ← dv(doc1)
4: Y ← dv(doc2)
5: Yapprox ← X
6: while not converged do

7: D ← Y − Yapprox

8: Wc ← findClosestWord(D,model)
9: Wf ← findFarthestWord(D,model)
10: ifWc > −Wf then

11: Yapprox ← Yapprox + wv(Wc)
12: append(Wc, path)
13: else

14: Yapprox ← Yapprox − wv(Wf)
15: append(Wf , path)

16: return path

Implementation and Results

The distance measure that we used in our experiments was cosine similarity (instead of minimizing

the distance we maximized the similarity). We also experimented with cosine distance and euclidean

distance but gained the best results with the cosine similarity.

We conducted experiments in a semi-automatic fashion, rather than fully-automatic. The reason for

this is, that the Econstor16 vocabulary contained too many distorted words (like atthe, a_y and yheo)

caused by formatting issues, equations and encoding problems. That was caused by failures during

the extraction of the plaintext from the PDF files, which led to non-sense words in the vocabulary. The

short term solution was to hand-pick the words that where added to the approximation path, rather

than letting an algorithm decide. More precisely, the algorithm came up with a list of candidates and

the first meaningful word was selected by hand. This effectively limited the amount of repetitions that

could be undertaken. Nevertheless, during the semi-automatic testing, observations were made that

will be exemplified using two examples. For the first example we selected two distant documents. The

tables 7 and 8 give a brief overview over the content of the documents.

c© EEXCESS consortium: all rights reserved 32

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Table 7: Overview Document X, Example 1

Variable X

Author Hendrik Hagedorn

Title In search of the marginal entrepreneur: Benchmarking

regulatory frameworks in their effect on entrepreneurship

Keywords Benchmarking method, entrepreneurship, incentives,

dataset, regulation

Table 8: Overview Document Y, Example 1

Variable Y

Author John Hartwick

Title Mining Gold for the Currency during the Pax Romana

Keywords Gold coinage, Roman money supply, roman empire

Table 9: Approximation process of two distant documents. The similarity columns indicate the co-

sine similarity between Y and the current approximation. Note that the approximation was

conducted in 100 dimensional space and then replicated in 600 dimensional space.

Iteration Vector Similarity Similarity

@100 @600

initial diff = Y - X -.4368 -.0327

1 diff = diff - "job" -.1405 .0044

2 diff = diff - "carbon" .1195 .0276

3 diff = diff + "empire" .2241 .1001

4 diff = diff + "goldsmith" .3647 .0739

5 diff = diff - "country" .5181 .0748

6 diff = diff - "interest" .6082 .0745

Table 9 presents the results of the approximation algorithm. There are some notable aspects:

1. Although the initial similarity is low (-1 is the maximum value here which denotes a diametrically

opposed vector) it takes only a few iterations to achieve a high similarity.

2. Most of the words are actually meaningful to explain the difference between the two documents:

"empire" and "goldsmith" account for the document Y and "jobs" and "interest" are specific to

document X.

3. There are also words that do not explain the content, like "carbon" and "country"

4. It’s worth noting that, although it makes intuitively sense, the word "goldsmith" is not used in

either documents.

5. When the results of the approximation in 100 dimensions are replicated in 600 dimensions, we

find, that interation 3 produces the best result, and afterwards the process is stuck in a local

optimum.

The setting for the second example differs in two aspects: (1) we used a 600 dimensional embedding

rather than a 100 dimensional to drive the approximation and (2) we selected documents that were

written by the same author, but on different topics. An overview over these documents is given in

table 10 and 11. The respective approximation process is depicted in table 12. Again, we find suitable

words that explain the difference well ("fuel", "diesel", "debt", "stock") and we find words that are

c© EEXCESS consortium: all rights reserved 33

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Table 10: Overview Document X, Example 2

Variable X

Author Hans-Werner Sinn

Title Pareto Optimality int the Extraction

of Fossile Fuels and the Greenhouse Effect

Keywords global warming, resource extraction,

Pareto optimality

Table 11: Overview Document Y, Example 2

Variable Y

Author Hans-Werner Sinn

Title EU Enlargement and the Future of the

Welfare State

Keywords EU expansion, migration, labour

market, welfare state

Table 12: Approximation process of two documents by the same author but on different topics. The

similarity column indicates the cosine similarity between Y and the current approximation.

Note that the approximation was conducted in 600 dimensional space and then replicated

in 100 dimensional space.

Iteration Vector Similarity Similarity

@600 @100

initial diff = Y - X -.0061 -.4368

1 diff = diff - "stock" .0419 -.3045

2 diff = diff + "industrial" .1059 -.2201

3 diff = diff - "employee" .1228 -.2409

4 diff = diff - "fuel" .1544 -.1977

5 diff = diff - "diesel" .1876 -.2231

6 diff = diff - "non-statistical" .1996 -.1769

7 diff = diff + "debt" .2098 -.187

less suitable ("non-statistical", "industrial"). But in contrast to the first example, the approximation

converges much slower. This is due to additional dimensions of the document embedding. Likewise

the first example, we find a word that is suitable despite the fact that it’s not mentioned in either

documents ("diesel"). Moreover, the convergence in 100 dimensions is comparatively slow and does

not increase monotonically.

7.3 Source Code and License

The source codes of the components described in this section are available via the following URLs:

• Blog Crawler (Blogs15 corpus) http://purl.org/eexcess/components/research/blogcrawler

• Blog Analyzer http://purl.org/eexcess/components/research/bloganalyzer

• Econstor16 corpus https://github.com/n-witt/EconstorCorpus created by the following two
components:

– Downloading Component https://github.com/n-witt/EconstorCorpus/blob/master/
Luke_the_Downloader/EconstorDownloader.ipynb

c© EEXCESS consortium: all rights reserved 34

http://purl.org/eexcess/components/research/blogcrawler
http://purl.org/eexcess/components/research/bloganalyzer
https://github.com/n-witt/EconstorCorpus
https://github.com/n-witt/EconstorCorpus/blob/master/Luke_the_Downloader/EconstorDownloader.ipynb
https://github.com/n-witt/EconstorCorpus/blob/master/Luke_the_Downloader/EconstorDownloader.ipynb

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

– Corpus Pre-Processor https://github.com/n-witt/EconstorCorpus/tree/master/Han_
the_Converter

• Popularity Estimator https://github.com/n-witt/econstorModelling/blob/master/
classifier.ipynb

• Vector Space Explorer https://github.com/n-witt/econstorModelling/blob/master/
ThePaperYouShouldWrite.ipynb

This code is released under the conditions of the Apache 2.022 license. The API documentation can

be found in the appendix on pages 66 and 68.

22http://www.apache.org/licenses/LICENSE-2.0

c© EEXCESS consortium: all rights reserved 35

https://github.com/n-witt/EconstorCorpus/tree/master/Han_the_Converter
https://github.com/n-witt/EconstorCorpus/tree/master/Han_the_Converter
https://github.com/n-witt/econstorModelling/blob/master/classifier.ipynb
https://github.com/n-witt/econstorModelling/blob/master/classifier.ipynb
https://github.com/n-witt/econstorModelling/blob/master/ThePaperYouShouldWrite.ipynb
https://github.com/n-witt/econstorModelling/blob/master/ThePaperYouShouldWrite.ipynb

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

8 Privacy-Preserving Usage Analysis Concept

In this section we describe means to conduct usage analysis of the EEXCESS framework while preserv-

ing the users’ privacy. In order to analyze how users interact with EEXCESS components and services,

we need to collect usage data. In EEXCESS, usage data is both a valuable resource for improving our

services and a sensitive resource in terms of privacy. Therefore, we developed the usage analysis

concept with both these requirements in mind. For acquiring usage data we log user interactions and

for the privacy-preserving analysis we rely on coarse-grained aggregated statistics, that hide the pref-

erences of individual users. In the following, we first review the purpose of usage analysis, then we

describe the data we collect and finally we present a concept that permits usage analysis without dis-

closing private information about individual users. The purpose and collected data were not subject

to major changes since the last deliverable, but are necessary to get a holistic view. Hence, we repeat

the respective sections from deliverable D5.3 [Sei+15] for completeness.

8.1 Purpose

Usage Analysis in EEXCESS serves the following purposes:

• Organizational: Provide a mechanism that makes the uptake of the EEXCESS framework trans-
parent.

– Reporting: In order to compile an in-time assessment of the quality of the services of EEX-

CESS, we require a well-defined process that gathers information from all components in a

consistent format.

– Planning: For strategical decisions, regarding the integration of new partners and the ex-

ploitation of additional content injection scenarios, we need to keep track of temporal usage

behavior and trends.

• Technical: Identify potential improvements in individual EEXCESS components.
– Automatic query generation: Usage statistics can be used to improve the query generation

process. Since EEXCESS offers the capability of automatically inferring queries from the

page, paragraph or sentence level context of a user, knowledge about interest groups can

be helpful in guiding this inference process.

– User interfaces: EEXCESS offers a variety of different types of search interfaces and result

visualizations. In order to best support users in finding the resources they are interested

in, we need measures to analyze how users interact with the components.

– Federated Recommender: Usage data can provide valuable input to the Federated Recom-

mender to perform source selection, i.e. to decide to which content providers the query

should be forwarded to retrieve the best results.

• Promotional: Provide live feedback to various interest groups. In particular, these are analysts
working for digital library on the content provider side, and individual user groups on the content

consumption side.

– Integrated content provider: Digital libraries which are already integrated into the EEXCESS

ecosystem shall be kept informed about the usage of their resources.

– Prospective content provider: For future content providers we want to provide information

about the current coverage of topical domains and the thematic interests of user groups.

– Users: We provide the same information as aggregated statistics for users to view their

usage of EEXCESS in the context of the interests of other user groups.

c© EEXCESS consortium: all rights reserved 36

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Privacy Proxy

Server-side
Logging

Client-
Application

Client-side
Logging

Log-File

Privacy-Preserving
Usage Mining

Federated
Recommender

Explicit Logging

Implicit
Logging

Figure 9: Client-side and server-side logging of usage data.

8.2 Usage Data

To provide reliable information for the purposes mentioned above, we need to collect usage data

from the client-applications of EEXCESS. The data collection is handled by a client-side and a server-

side logging component. The server-side component resides on the Privacy Proxy and implicitly logs

all queries and responses that pass through the proxy. In contrast, the client-side component has

to be integrated by client-developers into their applications. The client-side component provides the

functionality to create pre-defined logging events from user interactions and to send these to the

Privacy Proxy (see also Figure 9). All usage data is stored on the Privacy Proxy. In particular, we collect

the following data:

• Queries and Responses

• Details Queries and Details Responses

• User interactions with client components:
– Opening of a visualization

– Closing of a visualization

– Usage data of a visualization

• User interactions with resources:
– Opening of a resource in detailed view

– Closing of a resource in detailed view

– Usage of a resource as text citation

– Usage of a resource as image citation

– Usage of a resource as hyperlink citation

– A user’s rating of a resource

The client-side logging component is described in Section 9.

8.3 Privacy-Preserving Usage Analysis

This section describes the usage analysis concept with regard to privacy-preservation. In contrast to a

user’s interactions with search interfaces and result visualizations, the usage and rating of resources

bears much more sensitive private information about users. Therefore, we focus on preserving the

c© EEXCESS consortium: all rights reserved 37

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

privacy of this kind of information by computing aggregated statistics that support the different pur-

poses mentioned above (Section 8.1).

These aggregated statistics are computed and regularly updated within the Privacy Proxy. The ag-

gregation is performed across all users and covers queries, responses and the different interaction

types. Due to the coarse granularity of the variables, we can make the statistics publicly available via

a web-interface without disclosing any private information about users (Section 10). We report gen-

eral statistics, content provider-specific statistics and client component-specific statistics. The general

statistics include:

• Total number of unique users

• Total number of queries

• Total number of responses

• Total number of resource-specific queries

• Total number of resource-specific responses

Besides these numbers, we also report a ranked list of the Top-20 most frequent query terms ag-

gregated over all users. In order to gain more insights into how the different partners contribute to

these numbers, we report similar statistics for each content provider separately. These include:

• Name of content provider

• Number of responses

• Number of resource-specific responses

• Number of resources delivered to the client

• Number of resources delivered to the client after issuing a resource-specific query

• Number of interactions of a user with resources of this content provider (aggregated over all
users, resources and interaction types)

In order to assess the reach of the EEXCESS framework and the usage of individual modules imple-

mented in different client applications, we report client component-specific statistics:

• Name of the client component

• Number of unique users who used the client component

• A list of modules implemented in the client component. Each entry in the list contains:
– Name of the module

– Usage of the module; reported as the number of queries and user interactions performed

within the module

9 Privacy-Preserving Usage Analysis Libraries

The acquisition of usage data is implemented in the client-side logging library. Client-developers are

asked to include this library in their applications in order to enforce consistency of the logged data.

This library is available as a self-contained module from the C4-package23. A detailed description and

the source code documentation of the module is given in the Appendix on page 50. The server-side

logging component is described in deliverable D6.4 [Mok+16], section 6.2.2.

23http://www.purl.org/eexcess/components/c4

c© EEXCESS consortium: all rights reserved 38

http://www.purl.org/eexcess/components/c4

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Figure 10: Screenshot of the usage analysis web-interface showing general statistics of the EEXCESS

framework.

Figure 11: Screenshot of the usage analysis web-interface showing client component-specific statistics

of the EEXCESS framework. Usage is an aggregation of all queries issued and all interactions
performed from within the module. (Module names are not canonical. The same module

may appear more than once in the list if it was renamed, e.g. searchBar and c4/searchBar.)

10 Privacy-Preserving Usage Analysis Component

With the collaboration of INSA, we developed and implemented the usage analysis component as a

web-service that resides on the Privacy Proxy. It consists of a usage analysis component as backend

and a publicly accessible web interface as frontend. The backend component crawls the log-files on

a daily basis and updates the aggregated statistics, which are also stored on the Privacy Proxy. The

interface is available at http://eexcess.joanneum.at:4444/eexcess-usage/, see also Figure 10 and
Figure 11.

c© EEXCESS consortium: all rights reserved 39

http://eexcess.joanneum.at:4444/eexcess-usage/

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

11 Summary

In this deliverable we presented the final status of the user and usage mining prototypes in the frame

of EEXCESS. The core component for user mining is the context detection library C4, which is modu-

larized and can be used by any web-based client. C4 also wrapped the logging functionality and the

server-side component for detecting entities and entity categories for a given text (DoSeR). Resource

mining development continued along two lines: analysis of project-internal resources with the prereq-

uisite of privacy-preserving logging, and popularity estimation of external resources with the focus on

scientific papers. For the analysis of project-internal resources, a web-interface has been developed,

which uses the logged data to provide analysis statistics. All of the prototypes have reached a stable

state and the current development plan foresees evaluation and bugfixing.

c© EEXCESS consortium: all rights reserved 40

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

Acknowledgement

The research leading to these results has received funding from the European Union’s Seventh Frame-

work Programme (FP7/2007-2013) under grant agreement nr 600601.

c© EEXCESS consortium: all rights reserved 41

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

12 References

[TB00] Erik F. Tjong Kim Sang and Sabine Buchholz. “Introduction to the CoNLL-2000 Shared Task:

Chunking”. In: Proceedings of the 2Nd Workshop on Learning Language in Logic and the

4th Conference on Computational Natural Language Learning - Volume 7. ConLL ’00. Lis-

bon, Portugal: Association for Computational Linguistics, 2000, pp. 127–132. DOI: 10.3115/
1117601.1117631. URL: http://dx.doi.org/10.3115/1117601.1117631.

[MT04] Rada Mihalcea and Paul Tarau. “TextRank: Bringing order into texts”. In: Proceedings of the

Conference on Empirical Methods in Natural Language Processing. Association for Com-

putational Linguistics. 2004.

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality of data with

neural networks”. In: Science 313.5786 (2006), pp. 504–507.

[MW07] Gary Marchionini and Ryen White. “Find What You Need, Understand What You Find”. In:

Int. J. Hum. Comput. Interaction 23.3 (2007), pp. 205–237.

[Obe+07] Hartmut Obendorf et al. “Web Page Revisitation Revisited: Implications of a Long-term

Click-stream Study of Browser Usage”. In: CHI ’07. ACM, 2007, pp. 597–606. ISBN: 978-1-

59593-593-9. DOI: 10.1145/1240624.1240719. URL: http://doi.acm.org/10.1145/
1240624.1240719.

[Guo+09] Jiafeng Guo et al. “Named Entity Recognition in Query”. In: Proceedings of the 32Nd Inter-

national ACM SIGIR Conference on Research and Development in Information Retrieval.

SIGIR ’09. Boston, MA, USA: ACM, 2009, pp. 267–274. ISBN: 978-1-60558-483-6. DOI: 10.
1145/1571941.1571989. URL: http://doi.acm.org/10.1145/1571941.1571989.

[MD10] Pawet Mazur and Robert Dale. “WikiWars: A New Corpus for Research on Temporal Expres-

sions”. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing. EMNLP ’10. Cambridge, Massachusetts: Association for Computational Linguis-

tics, 2010, pp. 913–922. URL: http://dl.acm.org/citation.cfm?id=1870658.1870747.

[HPW11] David Hauger, Alexandros Paramythis, and Stephan Weibelzahl. “Using Browser Inter-

action Data to Determine Page Reading Behavior”. In: UMAP’11. Springer-Verlag, 2011,

pp. 147–158. ISBN: 978-3-642-22361-7. URL: http://dl.acm.org/citation.cfm?id=
2021855.2021869.

[Hin+12] Geoffrey E. Hinton et al. “Improving neural networks by preventing co-adaptation of fea-

ture detectors”. In: CoRR abs/1207.0580 (2012). URL: http://arxiv.org/abs/1207.0580.

[Mik+13] Tomas Mikolov et al. “Efficient Estimation of Word Representations in Vector Space”. In:

CoRR abs/1301.3781 (2013).

[YMK13] Seiji Yamada, Naoki Mori, and Kazuki Kobayashi. “Peripheral Agent: Implementation of

Peripheral Cognition Technology”. In: CHI ’13 Extended Abstracts on Human Factors in

Computing Systems. CHI EA ’13. Paris, France: ACM, 2013, pp. 1701–1706. ISBN: 978-1-

4503-1952-2. DOI: 10.1145/2468356.2468661. URL: http://doi.acm.org/10.1145/
2468356.2468661.

[LM14] Quoc V. Le and Tomas Mikolov. “Distributed Representations of Sentences and Docu-

ments”. In: Proc. of the 31th Int. Conf. on Machine Learning, ICML 2014, Beijing, China,

21-26 June 2014. 2014, pp. 1188–1196. URL: http://jmlr.org/proceedings/papers/v32/
le14.html.

[Sei+14] Christin Seifert et al. D5.2 – First Prototype on User Profile and Context Detection, Usage

Analysis Methods and Services. Tech. rep. University of Passau, 2014.

[DOL15] Andrew M Dai, Christopher Olah, and Quoc V Le. “Document embedding with paragraph

vectors”. In: arXiv preprint arXiv:1507.07998 (2015).

c© EEXCESS consortium: all rights reserved 42

http://dx.doi.org/10.3115/1117601.1117631
http://dx.doi.org/10.3115/1117601.1117631
http://dx.doi.org/10.3115/1117601.1117631
http://dx.doi.org/10.1145/1240624.1240719
http://doi.acm.org/10.1145/1240624.1240719
http://doi.acm.org/10.1145/1240624.1240719
http://dx.doi.org/10.1145/1571941.1571989
http://dx.doi.org/10.1145/1571941.1571989
http://doi.acm.org/10.1145/1571941.1571989
http://dl.acm.org/citation.cfm?id=1870658.1870747
http://dl.acm.org/citation.cfm?id=2021855.2021869
http://dl.acm.org/citation.cfm?id=2021855.2021869
http://arxiv.org/abs/1207.0580
http://dx.doi.org/10.1145/2468356.2468661
http://doi.acm.org/10.1145/2468356.2468661
http://doi.acm.org/10.1145/2468356.2468661
http://jmlr.org/proceedings/papers/v32/le14.html
http://jmlr.org/proceedings/papers/v32/le14.html

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

[Dop15] Gerhard Doppler. D7.4 – Second Prototype Integration and Deployment. Tech. rep. BITM,

2015.

[Pas15] Uni Passau. D1.2 – Second Conceptual Architecture and Requirements Definition. Tech.

rep. 2015.

[Sch15] Jörg Schlötterer. “From Context to Query”. In: Proceedings of the 30th Annual ACM Sympo-

sium on Applied Computing. SAC ’15. Salamanca, Spain: ACM, 2015, pp. 1108–1109. ISBN:

978-1-4503-3196-8. DOI: 10.1145/2695664.2696061. URL: http://doi.acm.org/10.1145/
2695664.2696061.

[Sch+15] Jörg Schlötterer et al. “From Context-Aware to Context-Based: Mobile Just-In-Time Retrieval

of Cultural Heritage Objects”. In: Proc. European Conference on IR Research (ECIR 2015).

Ed. by Allan Hanbury et al. LNCS 9022. Vienna, Austria: Springer, Mar. 2015, pp. 805–808.

DOI: 10.1007/978-3-319-16354-3_90.

[SSG15] Christin Seifert, Jörg Schlötterer, and Michael Granitzer. “Towards a Feature-Rich Data Set

for Personalized Access to Long-Tail Content”. In: Proceedings of the 30th Annual ACM

Symposium on Applied Computing. New York, NY, USA: ACM, Apr. 2015.

[Sei+15] Christin Seifert et al. D5.3 – Second Prototype on User Profile and Context Detection, Usage

Analysis Methods and Services. Tech. rep. University of Passau, 2015.

[ZSG15a] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “From General to Specialized

Domain: Analyzing Three Crucial Problems of Biomedical Entity Disambiguation”. In: Pro-

ceedings of 26th International Conference on Database and Expert Systems Applications

(DEXA). Springer, 2015.

[ZSG15b] Stefan Zwicklbauer, Christin Seifert, andMichael Granitzer. “Linking Biomedical Data to the

Cloud”. English. In: Smart Health. Ed. by Andreas Holzinger, Carsten Röcker, and Martina

Ziefle. Vol. 8700. Lecture Notes in Computer Science. Springer International Publishing,

2015, pp. 209–235. ISBN: 978-3-319-16225-6. DOI: 10.1007/978-3-319-16226-3_9. URL:
http://dx.doi.org/10.1007/978-3-319-16226-3_9.

[ZSG15c] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Search-based Entity Disam-

biguation with Document-Centric Knowledge Bases”. In: Proceedings of the 14th Interna-

tional Conference on Knowledge Management and Knowledge Technologies (I-Know). Oct.

2015.

[BSM16] Christoph Besel, Jörg Schlötterer, and Granizer Michael. “Inferring Semantic Interest Pro-

files from Twitter Followees”. In: Proceedings of the 31th Annual ACM Symposium on Ap-

plied Computing. SAC ’16. New York, NY, USA: ACM, 2016. DOI: 10.1145/2851613.2851819.

[Dop16a] Gerhard Doppler. D7.5 – Second Evaluation Report Test Beds. Tech. rep. BITM, 2016.

[Dop16b] Gerhard Doppler. D7.6 – Final Prototype Integration and Deployment. Tech. rep. BITM,

2016.

[JGS16] Johannes Jurgovsky, Michael Granitzer, and Christin Seifert. “Evaluating Memory Efficiency

and Robustness of Word Embeddings”. In: Advances in Information Retrieval, ECIR 2016,

Padova, Italy. Springer International Publishing, 2016, pp. 200–211.

[Mok+16] Sonia Ben Mokhtar et al. D6.4 – Final Security Proxy Prototype and Reputation Protocols.

Tech. rep. INSA, 2016.

[ZSG16a] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “DoSeR - A Knowledge-Base-

Agnostic Framework for Disambiguating Entities Using Semantic Embeddings”. In: The Se-

mantic Web. Latest Advances and New Domains - 13th European Semantic Web Confer-

ence, ESWC 2016, Heraklion, Kreta, to appear. 2016.

c© EEXCESS consortium: all rights reserved 43

http://dx.doi.org/10.1145/2695664.2696061
http://doi.acm.org/10.1145/2695664.2696061
http://doi.acm.org/10.1145/2695664.2696061
http://dx.doi.org/10.1007/978-3-319-16354-3_90
http://dx.doi.org/10.1007/978-3-319-16226-3_9
http://dx.doi.org/10.1007/978-3-319-16226-3_9
http://dx.doi.org/10.1145/2851613.2851819

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

[ZSG16b] Stefan Zwicklbauer, Christin Seifert, and Michael Granitzer. “Robust and Collective Entity

Disambiguation through Semantic Embeddings”. In: Proceeding of the 39rd International

ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR

2016, Pisa, Italy, to appear. 2016.

c© EEXCESS consortium: all rights reserved 44

D5.4

Final Prototype: User Profile and Context Detection, Usage Analysis

A Appendix: Source Code Documentation

This section contains the detailed source code documentation for the following modules

• Entity and Category Detection service to provide an in-detail summary of entities and categories
given one or multiple paragraphs.

⇒ on page 46

• Word2Vec Rest Server to provide word2vec and doc2vec similarities.
⇒ on page 48

• Client-side library for context detection and wrappers for logging and entity disambiguation (Cul-
tural and sCientific Content in Context – C4), currently used in the Chrome extension, the Moodle

plugin, and the Wordpress plugin.

⇒ on page 50

• Self-contained widgets communicating through a dedicated message set via the Web Messaging
API, currently used in the Chrome extension, the Moodle plugin, and the Wordpress plugin.

⇒ on page 63

• Blog Crawler component for crawling and storing blog posts.
⇒ on page 66

• Blog Analyser for linking Blogs to EEXCESS.
⇒ on page 68

c© EEXCESS consortium: all rights reserved 45

1	of	2

Entity	and	Category	Detection

Our Entity and Category Detection service detects entities and categories of paragraphs. We
offer a Json rest interface which can be easily used to perform these tasks.

Download

For the Eexcess functions you have to download the following:

Eexcess Stand-alone jar

Doc2Vec Model

DBpedia HDT Files

Configuration file

The files can be downloaded under this Link
(https://www.dropbox.com/s/qbsbp9zfpc7h8sx/eexcess_package.tar?dl=0)

DBpedia Spotlight & English/German Models DBpedia Spotlight	(https://github.com/dbpedia-

spotlight/dbpedia-spotlight/wiki/Run-from-a-JAR)

Installation

Put Eexcess Stand-Alone jar and the configuration file into the same directory and adapt the
configuration file accordingly. Executing the jar file starts an Apache Tomcat 7 server
deploying the Eexcess web application.

Additionally, the eexcess application requires our Word2Vec Server Server
(https://github.com/quhfus/DoSeR/wiki/Word2Vec-Rest-Server)	to run properly.

Input	Json	Format

Set of Paragraphes: A textual paragraph containing "headline", "id" and "content".

Paragraph#Headline: The paragraph's headline

Paragraph#Id: Unique identifier to address the paragraph

Paragraph#Content: The textual main content, that should be annotated.

Input	Example	Format

{

"paragraphs"	: 	[{

								"headline"	: 	"Childhood",

								"id"	: 	"0",

								"content"	: 	"Ada	Lovelace	was	born	Augusta	Ada	Byron	on	10	December	1815,	t



2	of	2

Output	Json	Format

The sample code below shows a possible response to the given query above. We omit several
entities and categories in the code below due to space constraints.

Request	URL

Our Rest service is currently reachable under the following URL
http://zaire.dimis.fim.uni-passau.de:8999/doser-
disambiguationserverstable/webclassify/entityAndCategoryStatistic	(http://zaire.dimis.fim.uni-

passau.de:8999/doser-disambiguationserverstable/webclassify/entityAndCategoryStatistic)

he	child	of	the	poet	George	Gordon	Byron,	6th	Baron	Byron,	and	Anne	Isabella	\"Anna

bella\"	Milbanke,	Baroness	Byron.	George	Byron	expected	his	baby	to	be	a	\"glorious

	boy\"	and	was	disappointed	when	his	wife	gave	birth	to	a	girl.	Augusta	was	named	a

fter	Byron's	half-sister,	Augusta	Leigh,	and	was	called	\"Ada\"	by	Byron	himself."

				}

]

}

{"paragraphs": [{"id": "0","topic": {"text": "Anne	Isabella	Byron,	Baroness	Byron","en

tityUri": "http://dbpedia.org/resource/Anne_Isabella_Byron,_Baroness_Byron","categor

ies": [],"type": "","offset": []},"time": [{"mention": "10	December	1815","relevantEnti

ties": [{"text": "Ada	Lovelace","entityUri": "http://dbpedia.org/resource/Ada_Lovelac

e","categories": [{"name": "Ada	programming	language","uri": "http://dbpedia.org/reso

urce/Category:Ada_programming_language"}],"type": "Person","offset": 0}]}],"statisti

c": [{"key": {"text": "Lord	Byron","entityUri": "http://dbpedia.org/resource/Lord_Byro

n","categories": [{"name": "People	educated	at	Aberdeen	Grammar	School","uri": "http:

//dbpedia.org/resource/Category:People_educated_at_Aberdeen_Grammar_School"},{"name

": "Burials	in	the	East	Midlands","uri": "http://dbpedia.org/resource/Category:Buria

ls_in_the_East_Midlands"}],"type": "Person","offset": [83]},"value": 4}]}]}



1	of	2

Word2Vec	Rest	Server

Our Python Word2Vec Rest Server delivers word2vec similarities between Wikipedia/DBpedia
entities. Moreover, it is able to accept sentences/documents and computes a similarity score
between the document and one or multiple entities.

Setup
To start the Word2Vec Rest Server, you need the following python packages install:

1. Python 2.7 or later

2. Gensim 0.12.1 or later

3. Gunicorn 19.3.0 or later

4. Flask 0.10 or later

Simply start > startserver to start the server. Default settings: Running on http://0.0.0.0:5000
(http://0.0.0.0:5000)	Settings can be adapted in Word2VecRest.py in the constructor of
GunicornApplication.

Possible Settings:

IP/Port Address: The ip address and port the server is binded to

Workers: The number of parallel requests

D2WModel: Path to Document to Vec Model

W2VModel: Path to Word2Vec Model

If the server should be reachable from another host, you should install a proxy server (e.g.
nginx) to forward the request since flask and gunicorn do not provide connection outside of
localhost by default.

Usage

Word2Vec

To compute the similarities between the entities Alan_Turing and Computer_science as well
as Ada_Lovelace and Lord_Byron we use the JSON code below. Generally, we can concatenate
multiple entity pairs which should be compared.

{

"data": ["Alan_Turing|Computer_science",	"Ada_Lovelace|Lord_Byron"]

}



2	of	2

We note that the entity names are the same as provided by Wikipedia/DBpedia.

Doc2Vec

With Doc2Vec we are able to infer a vector out of a text snippet. This vector is compared with
the given entities vectors. In other words we compute the similarity between the given text
and the entity describing texts of the given entities.

The resulting similarity value is in the range between 0 and 2, with 2 meaning that the
documents are identical. Again, the entity names are the same as provided by
Wikipedia/DBpedia.

{

"document": [{

"surfaceForm": "Ada	Lovelace",

	"qryNr": "0",

	"context": "Lovelace	was	born	10	December	1815	as	the	only	legitimate	child	of	the	

poet	George,	Lord	Byron	and	his	wife	Anne	Isabella	Noel.	All	Byron's	other	children

	were	born	out	of	wedlock	to	other	women.	Byron	separated	from	his	wife	a	month	aft

er	Ada	was	born	and	left	England	forever	four	months	later,	eventually	dying	of	dis

ease	in	the	Greek	War	of	Independence	when	Ada	was	eight	years	old.	Ada's	mother	re

mained	bitter	towards	Lord	Byron	and	promoted	Ada's	interest	in	mathematics	and	log

ic	in	an	effort	to	prevent	her	from	developing	what	she	saw	as	the	insanity	seen	in

	her	father,	but	Ada	remained	interested	in	him	despite	this	(and	was,	upon	her	eve

ntual	death,	buried	next	to	him	at	her	request).",

	"candidates": ["Ada_Lovelace",	"Lord_Byron"]

}]

}



1	of	13

C4 - Cultural and sCientific Content in Context

Installation

The simplest way is to use bower	(http://bower.io/)	. C4 is available in the package repository, so
bower	install	c4 will install everything you need.
After c4 is installed, you might need to configure the paths for requirejs. This can be
comfortably automated with grunt-bower-requirejs	(https://github.com/yeoman/grunt-bower-
requirejs)	. If you choose to configure the paths manually, your configuration might look similar
to this (first part of the script, in which you want to use c4 modules):

Once the paths are configured, you need to include your script via requirejs as usual, for
example like so:

where myScript is the script you want to execute and in which you use c4 modules.

Module	Overview

APIconnector A module that simplifies requests to the EEXCESS privacy proxy. It allows
to send (privacy preserved) queries, obtain details for a set of document badges
(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-format#response-

format)	and provides a cache of the last queries/result sets.

paragraphDetection A module that allows to extract textual paragraphs from HTML
documents (opposed to navigational menus, advertisements, etc.), construct queries in
the EEXCESS query profile	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-
and-Response-format#query-format)	format and determine the currently focused paragraph.

CitationBuilder A module to assemble ready-to-use citations from metadata provided
as JSON. See the CitationBuilder README.md	(CitationBuilder/README.md)	for details.

searchBar A module to add a bar to the bottom of the page, which allows query

requirejs.config({

		baseUrl: 	'bower_components/',

		paths: 	{

				jquery: 	'jquery/dist/jquery',

				"jquery-ui": 'jquery-ui/jquery-ui',

				graph: 'graph/lib/graph',

				"tag-it": 'tag-it/js/tag-it'

		}

});



<script	data-main="myScript"	src="bower_components/requirejs/require.js"></script>

2	of	13

interaction and displaying results.

iframes A utility module for communication with iframes, which enables broadcasting
messages.

namedEntityRecognition A utility module for communication with the DoSer
(https://github.com/quhfus/DoSeR)	named entity recognition service.

logging A module that simplifies the handling of different types of logging events.

APIconnector

The APIconnector module provides means to communicate with the (EEXCESS) Federated
Recommender via the Privacy Proxy.
A working example using the APIconnector can be found in examples/searchBar_Paragraphs
(examples/searchBar_Paragraphs)

init(settings): allows to initialize the APIconnector with custom parameters. You
must call this method and specify the origin attribute (see below), before you can send
queries. The minimum configuration is shown in the example below. The following
parameters can be customized:

base_url The basic url of the server to call

timeout The timeout in ms, after which a request to the server is canceled. Default
is 10000.

logTimeout The timeout in ms, after which a logging request to the server is
canceled. Default is 5000.

loggingLevel Flag whether queries/results should be logged on the privacy proxy.
Defaults to 0 (logging enabled). If you want to disable the logging on the server
you need to set the flag to 1.

cacheSize The size of the query/result cache. Determines how many queries and
corresponding result sets should be cached. Default is 10.

suffix_recommend The endpoint for the recommender service. Default:
"recommend".

suffix_details The endpoint to get details for result items. Default: "getDetails".

suffix_favicon The endpoint from which to retrieve the provider favicons.
Default: "getPartnerFavIcon?partnerId=".

suffix_log The endpoint for logging requests. Default: "log/".

origin The identifier for the requesting client/user. This object must contain the
attributes clientType, clientVersion and userID, see the example below.

require(['c4/APIconnector'],	function (api)	{

		api.init({

				origin: {

						clientType: "some	client",	//	the	name	of	the	client	application

						clientVersion: "42.23",	//	the	version	nr	of	the	client	applicatio

n

						userID: "E993A29B-A063-426D-896E-131F85193EB7"	//	UUID	of	the	curr



3	of	13

query(profile,callback): allows to query the Federated Recommender (through the
Privacy Proxy). The expected parameters are a EEXCESS profile
(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-format)	and a
callback function.

queryPeas: allows to query the Federated Recommender (through the Privacy Proxy) in a
privacy-preserving way. It returns the exact same result as query. It uses the PEAS
indistinguishability protocol	(https://github.com/EEXCESS/peas#indistinguishability-protocol)	. This
example shows how to use it:

getDetails(detailsRequestObj,callback): allows to retrieve details for result items
from the Federated Recommender (through the Privacy Proxy). The expected parameter
is a detailsRequestObj	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-
Response-format#pp-details-query-format)	object, that has an origin, queryID and a list of
document badges	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-
Response-format#response-format)	of the items for which to retrieve details. A callback
function can be used to return the results to.

ent	user

				}

		});

});

require(['c4/APIconnector'],	function (api)	{

		var 	profile	= 	{

				contextKeywords: [{

						text: "someKeyword"

				}]

		};

		api.query(profile,	function (response)	{

				if (response.status	=== 	'success')	{

						//	do	something	with	the	result	contained	in	response.data

				}	else 	{

						//	an	error	occured,	details	may	be	in	response.data

				}

		});

});



require(["APIconnector"],	function (apiConnector){

		var 	nbFakeQueries	= 	2;	//	The	greater	the	better	from	a	privacy	point	of	v

iew,	but	the	worse	from	a	performance	point	of	view	(2	or	3	are	acceptable	va

lues).	

		var 	query	= 	JSON.parse('{"origin":	{"userID":	"E993A29B-A063-426D-896E-131

F85193EB7",	"clientType":	"EEXCESS	-	Google	Chrome	Extension",	"clientVersion

":	"2beta",	"module":	"testing"},	"numResults":	3,	"contextKeywords":	[{"text

":	"graz","weight":	0.1},	{"text":	"vienna","weight":	0.3}]');

		apiConnector.queryPeas(query,	nbFakeQueries,	function (results){

				var 	resultsObj	= 	results.data;	

		});

});



4	of	13

getCache(): allows to retrieve the cached queries/result sets.

getCurrent(): allows to retrieve the last successfully executed query and corresponding
result set. Returns null if no successful query has been executed up to that point.

logInteractionType: Enum for logging interaction types. See sendLog for usage.

sendLog(interactionType,	logEntry): allows to send logging requests to the server.
The parameter interactionType specifies the type of the interaction to log and the
parameter logEntry the entry to be logged.

require(['c4/APIconnector'],	function (api)	{				

		var 	detailsRequestObj	= 	{

										origin	: 	{"origin": 	{"userID": 	"E993A29B-A063-426D-896E-131F85193EB

7",	"clientType": 	"EEXCESS	-	Google	Chrome	Extension",	"clientVersion": 	"2bet

a",	"module": 	"testing"},

										documentBadge: 	[

														{

																		id: 	"/09003/4A65C4999F4077781A1F9CF2510EE512CD6571B9",

																		uri: 	"http://europeana.eu/resolve/record/09003/4A65C4999F40

77781A1F9CF2510EE512CD6571B9",

																		provider: 	"Europeana"

														}

],

										queryID: 	"70342716"

						};

		api.getDetails(detailsRequestObj,	function (response)	{

				if (response.status	=== 	'success')	{

						//	do	something	with	the	result	contained	in	response.data

				}	else 	{

						//	an	error	occured,	details	may	be	in	response.data

				}

		});

});



require(['c4/APIconnector'],	function (api)	{

		api.getCache().forEach(function (){

				console.log(this .profile);	//	the	query

				console.log(this .result);	//	the	result	set

		});

});



require(['c4/APIconnector'],	function (api)	{

		var 	current	= 	api.getCurrent();

		console.log(current.profile);	//	the	query

		console.log(current.result);	//	the	result	set

});



require(['c4/APIconnector'],	function (api)	{

		//	the	log	entry	normally	will	be	created	within	a	widget,	here	we	define	o


5	of	13

paragraphDetection

A module to extract textual paragraphs from arbitrary webpage markup, find the paragraph
currently in focus of the user and create a search query from a paragraph.
A working example using the paragraphDetection can be found in
examples/searchBar_Paragraphs	(examples/searchBar_Paragraphs)

init(settings):allows to initialize the paragraph detection with custom parameters.
You only need to provide the parameters you want to change. Parameters that can be
changed are a prefix that is used for the identifiers of newly created HTML elements
and the classname that will added to those elements (atm a wrapper div with the
mentioned parameters is created around the detected paragraph). The example uses the
default values, if you are fine with these, you do not need to call the init method.

getParagraphs([root]): allows to detect text paragraphs in arbitrary HTML markup. The
detection heuristic tries to extract 'real' paragraphs, opposed to navigation menus,
advertisements, etc. The root parameter (optional) specifies the root HTML-element
from where to start the extraction. If it is not given, the detection will use document as
root.
Returns an array of the detected paragraphs with the entries in the following format:

ne	explicitly.

		//	The	entry	we	create	logs	the	citation	of	a	result	item	as	an	image.

		var 	logEntry	= 	{

				origin: {

						module: "example	widget"

				},

				content: {

						documentBadge: {< documentBadge	of	the	item> }

				},

				queryID:< identifier	of	the	query	that	provided	this 	result	item>

		}

		api.sendLog(api.logInteractionType.itemCitedAsImage,logEntry);

});

require(['c4/paragraphDetection'],	function (paragraphDetection)	{

		paragraphDetection.init({

				prefix: "eexcess",	//	default	value

				classname: "eexcess_detected_par"	//	default	value

		});

});



{

		id: 	"<prefix>_par_0",	//	identifier,	the	prefix	can	be	customized	via	the	i

nit	method

		elements: [],	//	the	HTML-elements	spanning	the	paragrah

		multi: false ,	//	indicator,	whether	the	paragraph	consists	of	e.g.	a	singe	

<p>	element	or	several	<p>	siblings



6	of	13

Usage:

paragraphToQuery(text,callback,[id],[headline]): creates a query from the given text
in the EEXCESS profile	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-
Response-format#query-format)	format. Only the attribute contextKeywords will be set. The
parameters to be set are:

text - The text of the paragraph for which to create a query

callback(response) - The callback function to execute after the query generation.
The generated query profile is contained in response.query or if an error occurs,
error details are provided in response.error

[id] - optional identifier of the paragraph

[headline] - optional headline corresponding to the paragraph

findFocusedParagraphSimple([paragraphs]): tries to determine the paragraph, the user
is currently looking at.
In this simple version, the topmost left paragraph is accounted as being read, except for
the user explicitly clicking on a paragraph. When a change of the focused paragraph
occurs, a paragraphFocused event is dispatched with the focused paragraph attached.
The set of paragraphs to observe can be specified via the optional paragraphs
parameter. If this parameter is not set, the method will observe paragraphs already
detected by the module (if any - e.g. from a previous getParagraphs call). The
paragraphFocused event may be dispatched several times for the same paragraph.

		content: "Lorem	ipsum	dolor",	//	the	textual	content	of	the	paragraph

		headline: "Sit	Amet"	//	textual	content	of	the	corresponding	headline	of	the

	paragraph

}

require(['c4/paragraphDetection'],	function (paragraphDetection)	{

		var 	paragraphs	= 	paragraphDetection.getParagraphs();

		paragrahps.forEach(function (entry){

				console.log(entry);	//	do	something	with	each	paragraph

		});

});



require(['c4/paragraphDetection'],	function (paragraphDetection)	{

var 	text	= 	'Lorem	ipsum	dolor	sit	amet...';

paragraphDetection.paragraphToQuery(text,	function (response){

if (typeof 	response.query	!== 	'undefined')	{

		//	query	has	sucessfully	been	constructed

		console.log(response.query);

}	else 	{

		//	something	went	wrong

		console.log(response.error);

}

});

});



require(['jquery','c4/paragraphDetection'],	function ($,paragraphDetection)	{

7	of	13

findFocusedParagraph([paragraphs]): tries to determine the paragraph, the user is
currently looking at.
This method is in principle identical to findFocusedParagraphSimple, but accounts for
more implicit user interaction. The probability of a focused paragraph is calculated by a
weighted combination of its size, position and distance to the mouse position. When
mouse movements occur, the distance to the mouse position has a higher weight,
while scrolling events render the paragraph position more important.

CitationBuilder

Please see the README.md	(CitationBuilder/README.md)	of the CitationBuilder module for details.

searchBar

A module that adds a search bar to the bottom of the page, which enables to show and modify
the query and display the results.
A working example using the searchBar can be found in examples/searchBar_Paragraphs
(examples/searchBar_Paragraphs)

init(tabs[,config]): initializes the search bar with a set of visualization widgets
(parameter tabs) and custom configuration options (optional parameter config).
The tabs parameter specifies the visualization widgets
(https://github.com/EEXCESS/visualization-widgets)	to use for displaying the result in the
following format:

		//	detect	paragraphs	in	the	document

		paragraphDetection.getParagraphs();

		//	listen	for	paragraphFoucsed	events

		$(document).on('paragraphFocused',	function (e){

				console.log(evt.originalEvent.detail);	//	the	focused	paragraph

		});

		//	set	up	tracking	of	focused	paragraph

		paragraphDetection.findFocusedParagraphSimple();

});

require(['jquery','c4/paragraphDetection'],	function ($,paragraphDetection)	{

		//	detect	paragraphs	in	the	document

		paragraphDetection.getParagraphs();

		//	listen	for	paragraphFoucsed	events

		$(document).on('paragraphFocused',	function (e){

				console.log(evt.originalEvent.detail);	//	the	focused	paragraph

		});

		//	set	up	tracking	of	focused	paragraph

		paragraphDetection.findFocusedParagraphSimple();

});



8	of	13

The config object allows to customize the following parameters (you only need to
specify the ones you would like to change):

queryFn - a custom function to query a server for results. The function must look
like

where the profile parameter represents an EEXCESS query profile
(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-

format#query-format)	. By default, the query method of the APIconnector module is
used.

imgPATH - path where images are stored. Defaults to 'img/'

queryModificationDelay - the delay before a query is executed (in ms) after the
user interacted with it (added/removed keywords, changed main topic, etc).
Defaults to 500.

queryDelay - the delay (in ms) before a query is executed due to changes from the
parent container. This delay is used after the query has been changed through the
setQuery method of this module. Defaults to 2000.
In addition, the delay can also be provided as parameter to the setQuery function,
in order to enable different delays for specific interactions.

storage - an object providing storage capabilities. By default, the search bar will
use the browser's local storage to store values. The storage function must exhibit
two functions:

set(item,	callback) The item passed to this function is an object
containing key value pairs to store. It looks like this:

[{

		name: "widget	name"	//	name	of	the	widget,	will	be	displayed	in	the	tab	navi

gation	for	selection	of	the	widget

		url: "<path>"	//	path	to	the	main	page	of	the	widget

		icon: "<path>"	//	path	to	an	icon	image	for	the	widget	(optional)

},{

		name: "widget2",

		url: "<path2>"

},{

		//	...

}

]



		function (profile,function (response){

				console.log(response.status);	//	should	inform	about	the	status,	ei

ther	'success'	or	'error'

				console.log(response.data);	//	should	contain	the	results	on	succes

s	and	error	details	on	error

		});



{

		key1: "value1",	//	value	can	be	a	simple	type	like	String


9	of	13

The callback parameter is a callback function without parameters to be
executed after storing the item.

get(key,	callback) The key parameter is either a single String (to get a
single value) or an Array of Strings (to get several values).
The callback function should be called with an object, containing the
provided key(s) and their corresponding values like so:

setQuery(contextKeywords	[,delay]): sets the query in the search bar. The
contextKeywors must be in the format as the contextKeywords in the EEXCESS query
profile format	(https://github.com/EEXCESS/eexcess/wiki/%5B21.09.2015%5D-Request-and-Response-
format#query-format)	.
The query will automatically be executed after the delay given by the settings (default:
2000ms, can be customized via searchBar.init(<tabs>,{queryDelay:<custom	value>}).
Alternatively, this setting can be overwritten by providing the optional delay
parameter, which specifies the delay in ms.

iframes

A utility module for communicating between iframes

sendMsgAll(message): send a message to all iframes embedded in the current window.
The expected parameter is the message to send. The example below shows how to
inform all included widgets	(https://github.com/EEXCESS/visualization-widgets)	that a new query
has been issued.

		key2: {

				//	value	can	also	be	an	JSON-serialiazable	objects

		}

}

		var 	response	= 	{

				key1: 	value1,

				key2: 	value2

		}

		callback(response);



require(['jquery','c4/searchBar'],	function ($,searchBar)	{

		//	searchBar	needs	to	be	initialized	first,	omitted	here

		var 	contextKeywords	= 	[{

				text: "Lorem"

		},{

				text: "ipsum"

		}];

		searchBar.setQuery(contextKeywords,	0);	//	query	is	set	and	will	be	immedia

tely	executed	(delay:	0ms)

});



10	of	13

namedEntityRecognition

A utility module to query the EEXCESS recognition and disambiguation service

entitiesAndCategories(paragraphs,callback): allows to extract Wikipedia entities and
associated categories from a given piece of text. In addition, the main topic of the text
and time mentions are extracted. The expected parameters are a set of paragraphs and a
callback function.

require(['c4/iframes'],	function (iframes)	{

		var 	profile	= 	{

				contextKeywords: [{

						text: 'someKeyword'

				}];

		};

		iframes.sendMsgAll({

				event: 'eexces.newQueryTriggered',

				data: profile

		});

});



require(['c4/namedEntityRecognition'],	function (ner)	{

		var 	paragraph	= 	{

				id: 42,

				headline: "I	am	a	headline",

				content: "Lorem	ipsum	dolor..."

		};

		ner.entitiesAndCategories({paragraphs: [paragraph]},	function (response){

				if (response.status	=== 	'success')	{

						//	the	results	are	contained	in	response.data.paragraphs

						response.data.paragraphs.forEach(function (){

								console.log(this .time);	//	contains	time	mentions	and	associated	ent

ities/categories

								console.log(this .topic);	//	contains	the	main	topic	entity

								console.log(this .statistic);	//	contains	the	extracted	entities/cate

gories

								this .statistic.forEach(function (){

										console.log(this .key.text);	//	label	of	the	entity

										console.log(this .key.categories);	//	associated	categories

										console.log(this .key.type);	//	type	of	the	entity	(person,	locatio

n,	organization,	misc)

										console.log(this .value);	//	number	of	occurences	of	the	entity	in	

the	paragraph

								});

						});

				}	else 	{

						//	an	error	occured,	details	may	be	in	response.data

				}

		});



11	of	13

logging-API

A module that provides an API for generating logging events in the format specified by
Logging Format	(https://github.com/EEXCESS/eexcess/wiki/EEXCESS---Logging)	. Logging-Events are
passed over to the APIconnector which sends it to the logging endpoints of the Privacy Proxy.
A working example on how the logging is to be used, can be found in
examples/loggingExample	(examples/loggingExample)	.

The logging-API provides methods to create logging events in the correct format and it
broadcasts these events as messages via the browser's Messaging-API. Thus, the client
application needs to listen to the following messages and forward them to the Privacy Proxy:

});

		require(['c4/APIconnector'],	function (api)	{

				api.init({origin: 	{

						clientType: 	"EEXCESS	Chrome	extension",

						clientVersion: 	"2.0.1"

						userID: 	"93939A-8494BE-99ADF2"

						}});

				window.onmessage	= 	function (msg)	{

						if 	(msg.data.event)	{

								switch 	(msg.data.event)	{

										case 	'eexcess.log.moduleOpened':

														api.sendLog(api.logInteractionType.moduleOpened,	msg.data.data);

														break ;

										case 	'eexcess.log.moduleClosed':

														api.sendLog(api.logInteractionType.moduleClosed,	msg.data.data);

														break ;

										case 	'eexcess.log.moduleStatisticsCollected':

														api.sendLog(api.logInteractionType.moduleStatisticsCollected,	msg.dat

a.data);

														break ;

										case 	'eexcess.log.itemOpened':

														api.sendLog(api.logInteractionType.itemOpened,	msg.data.data);

														break ;

										case 	'eexcess.log.itemClosed':

														api.sendLog(api.logInteractionType.itemClosed,	msg.data.data);

														break ;

										case 	'eexcess.log.itemCitedAsImage':

														api.sendLog(api.logInteractionType.itemCitedAsImage,	msg.data.data);

														break ;

										case 	'eexcess.log.itemCitedAsText':

														api.sendLog(api.logInteractionType.itemCitedAsText,	msg.data.data);

														break ;

										case 	'eexcess.log.itemCitedAsHyperlink':

														api.sendLog(api.logInteractionType.itemCitedAsHyperlink,	msg.data.dat

a);



12	of	13

The methods of the logging-API are as follows:

init(config): allows to initialize the logging-API with custom parameters. You must
call this method and specify the origin attribute (see below), before you can call
methods of the logging-API. The following parameters can be customized:

origin The identifier for the requesting component. This object must contain a
module attribute, that specifies the name of the issuing component, see the
example below.

The logging-API provides the following methods to create corresponding logging events:

moduleOpened(moduleName): Create the logging event moduleOpened. The expected
parameter is the name of the component that has been opened.

moduleClosed(moduleName): Create the logging event moduleClosed. The expected
parameter is the name of the component that has been closed.

moduleStatisticsCollected(statistics): Create the logging event
moduleStatisticsCollected. The expected parameter can be of any type. statistics is
logged as-is.

itemOpened(documentBadge,	queryID): Create the logging event itemOpened. The
expected parameters are a documentBadge, which refers to the resource that was opened
in detailed view, and a queryID, which refers to the query that returned the resource.

itemClosed(documentBadge,	queryID,	duration): Create the logging event itemClosed.
The expected parameters are a documentBadge, which refers to the resource that was
closed in detailed view, a queryID, which refers to the query that returned the resource,
and a duration. The latter specifies the time in milliseconds, during which the item was
opened in detailed view.

itemCitedAsImage(documentBadge,	queryID): Create the logging event
itemCitedAsImage. The expected parameters are a documentBadge, which refers to the
resource that was cited as an image, and a queryID, which refers to the query that
returned the resource.

														break ;

										case 	'eexcess.log.itemRated':

														api.sendLog(api.logInteractionType.itemRated,	msg.data.data);

														break ;

										default :

														break ;

								}

						}

				}

		});

		require(['c4/logging'],	function (logging)	{

				logging.init({

						origin: {

								module: 	"Dashboard	Visualization"

						}

				});

		});



13	of	13

itemCitedAsText(documentBadge,	queryID): Create the logging event itemCitedAsText.
The expected parameters are a documentBadge, which refers to the resource that was
cited as text, and a queryID, which refers to the query that returned the resource.

itemCitedAsHyperlink(documentBadge,	queryID): Create the logging event
itemCitedAsHyperlink. The expected parameters are a documentBadge, which refers to
the resource that was cited as a hyperlink, and a queryID, which refers to the query that
returned the resource.

itemRated(documentBadge,	queryID,	minRating,	maxRating,	rating): Create the
logging event itemRated. The expected parameters are a documentBadge, which refers to
the resource that was rated and a queryID, which referst to the query that returned the
rated resource. minRating and maxRating allow to specifiy the range a rating can have.
rating is the actual value that has been assigned to the resource.

The following examples demonstrate the usage of these methods:

		require(['c4/logging'],	function (logging)	{

						logging.init({

								origin: {

										module: 	"Dashboard	Visualization"

								}

						});

						var 	queryID	= 	"483904939"

						var 	documentBadge	= 	{

								id: 	"995eb36f-151d-356c-b00c-4ef419bc2124",

								uri: 	"http://www.mendeley.com/research/hellenism-homoeroticism-shelley-circ

le",

								provider: 	"Mendeley"

						};

						logging.moduleOpened("anotherVisualizationName");

						logging.moduleClosed("anotherVisualizationName",	5000);

						logging.moduleStatisticsCollected({usageStatistics: 	42});

						logging.itemOpened(documentBadge,	queryID);	

						logging.itemClosed(documentBadge,	queryID,	1500);

						logging.itemCitedAsImage(documentBadge,	queryID);

						logging.itemCitedAsText(documentBadge,	queryID);

						logging.itemCitedAsHyperlink(documentBadge,	queryID);

						logging.itemRated(documentBadge,	queryID,	0,	4,	3);

				});



1	of	3

Widgets

EEXCESS widgets are components like visualizations (Barchart, FacetScape, ...), which are
typically included via an iframe. Therefore, they should be self-contained, i.e. include all
necessary media, libraries, css-files, etc.

Communication with the EEXCESS-environment is enabled via the window.postMessage-
API, with the available options described in the following.

Usage
For usage examples see the examples folder and the according readme file.

Interface	-	using	window.postMessage
The data attribute in the transmitted messages adheres to the following pattern:

Incoming	messages

Available events:

queryTriggered

new Results

rating

error

queryTriggerd

This event specifies, that a new query was triggered. The event details contain the profile, that
is associated with this query

new	Results

This event indicates the arrival of new results. The event details consist of two attributes:
profile and results. Profile contains the user profile associated with the results and results
contains the results retrieved.

rating

event: eexcess.< event> ,

data: {< event	details> }


2	of	3

Indicates that an item was rated in another component. The widget can then update the
item's rating accordingly. The event details contain the uri of the item and score of the rating.

error

Used to indicate an error. The event details contain an error message as string.

Outgoing	Messages

Available events:

queryTriggered

eexcess.log.moduleOpened

eexcess.log.moduleClosed

eexcess.log.statisticsCollected

eexcess.log.itemOpened

eexcess.log.itemClosed

eexcess.log.itemCitedAsImage

eexcess.log.itemCitedAsText

eexcess.log.itemCitedAsHyperlink

eexcess.log.itemRated

currentResults

queryTriggered

Indicates a new query. The event details contain the profile associated with that query.

eexcess.log.moduleOpened

Indicates that a module was opened. The event details contain the origin and the name of the
module.

eexcess.log.moduleClosed

Indicates that a module was closed. The event details contain the origin, the name of the
module and optionaly the duration

eexcess.log.statisticsCollected

Indicates that a module wants to log data. The event details contain the origin and the data

eexcess.log.itemOpened

Indicates that an item is opened. The event details contain the origin, the queryID of the
original query and the documentBadge.

eexcess.log.itemClosed

3	of	3

Indicates that an item is closed. The event details contain the origin, the queryID of the
original query, the documentBadge and optionaly the duration.

eexcess.log.itemCitedAsImage

Indicates that an item was cited in document as an image. The event details contain the
origin, the queryID of the original query and the documentBadge.

eexcess.log.itemCitedAsText

Indicates that an item was cited in document as an text. The event details contain the origin,
the queryID of the original query and the documentBadge.

eexcess.log.itemCitedAsHyperlink

Indicates that an item was cited in document as an hyperlink. The event details contain the
origin, the queryID of the original query and the documentBadge.

eexcess.log.itemRated

Indicates that an item was rated. The event details contain the origin, the queryID, the
documentBadge and the rating.

currentResults

This event may be used by widgets upon initialization to obtain the current resultset (and
associated profile). It triggers the parent window to send a message with a newResults event.

1	of	2

BlogCrawler

This prototype is a focus web crawler that allows the visiting pre-defined websites, extract
their contents and save them into an elasticsearch	(https://www.elastic.co/products/elasticsearch)
datastore. The blog crawler is based on scrapy	(http://scrapy.org)	, a python framework to
facilitate the development of webscraping applications.

Requirements
Linux or Mac OS X

Python 2.7 or newer

Scrapy 0.22 or newer

lxml

pyOpenSSL

Elasticsearch 1.2.1 or newer

Java Runtime Environment 7 or newer

Installation
The easiest way to install the required software is to use the packet manager of the OS. The
commands below are tested with Ubuntu 14.04, but they should work on all the distributions
that use the apt-get packet manager. For yum-based systems like Fedora and SuSE some
modifications might be required.

The following commands will make sure that all requirements are met:

Elasticsearch can not be installed via apt-ge. Hence, this has to be done manually. First we
download the latest Elasticsearch version:

where x.y.z. is the current version number and thus needs to be replaced. Then the
installation process can be trigged via:

sudo	apt- get	install	- y	build- essential	git	python- pip	python	python- dev	libxml2- d

ev	libxslt- dev	lib32z1- dev	openjdk- 7- jdk

sudo	pip	install	pyopenssl	lxml	scrapy	elasticsearch	dateutils	Twisted	service_iden

tity



wget	https: //download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-x

.y.z.deb


2	of	2

Again, x.y.z refers to the latest's version number and has to be replaced. The installation is
complete and elasticsearch can be started using the following command:

It is to note, that the service will not start automatically when the computer boots up. If this is
required, the following command has to be used:

The blog crawler can be cloned from Github:

The crawler can be invoked by changing into the just cloned repository-directory and starting
the script crawlall.sh. That the process can take several hours. To interrupt the process must
be pressed.

sudo	dpkg	- i	elasticsearch- x.y.z.deb

sudo	service	elasticsearch	start

sudo	update- rc.d	elasticsearch	defaults	95	10

git	clone	purl.org/ eexcess/ components/ research/ blogcrawler}}

1	of	2

DataAnalyzer

This prototype is based on the the BlogCrawler that can be found here	(https://github.com/n-

witt/BlogCrawler)	. It searches hyperlinks to PDF-files and downloads them. In the next step it
tries to find a matching document in EconBiz	(http://www.econbiz.de/)	database. It implements
the following strategy:

The program checks whether the meta data fields author and text of the file contain any
information. If so, it sends a query assembled from these strings to EconBiz. After
fetching the result list, the length of the list is checked. In case the result list is longer
than zero, all results are examined and assessed (details will be described in the next
paragraph). When there is no result above a predefined quality threshold, the second
stage is executed, otherwise the result is stored and the processing continues with the
next document.

After the text of the first page of the file is retrieved, the text is divided into smaller
chunks (using punctuation and newline-symbols for that). The processing of these
parts of sentences is similar to the processing of the metadata in the previous section.
They are passed to the EconBiz API and the results are examined. If there is no result
above a predefined quality threshold, no match was found. Otherwise the list of
potential matches is stored.

To assess the quality of the results, a fuzzy string comparison library called fuzzywuzzy
(https://pypi.python.org/pypi/fuzzywuzzy/0.2)	is used. It contains a method that is invoked with an
arbitrary string (selector) and a list of strings (choices). The method returns the choices
sorted by closest match of the selector. Every item of the list also comes with a value from 0 to
100 which is the measure of quality. The following example illustrates that:

The quality value is used to decide if a document matches the search query.

The limitation to the first page is due to the fact that extraction of the text is a computationally
intensive task that can be mitigated by the limitation. Furthermore we assume that the first
page contains the authors name and the title of the document, which is true for many
scientific papers. And it is this information that are particularly valuable for descent search
results.

Requirements
Linux or Mac OS X

> 	choices	= 	["apple	pie",	"apples",	"spaghetti"]

> 	process.extract("apple",	choices)

[('apples',	91),	('apple	pie',	90),	('spaghetti',	36)]

> 	process.extract("apples",	choices)

[('apples',	100),	('apple	pie',	74),	('spaghetti',	29)]}



2	of	2

Python 2.7 or newer

fuzzywuzzy

PyPDF2

pdfminer

Installation
The recommended installation preliminaries and procedure for the Data Analyzer are
the same as for the Blog Crawler. The following was tested with Ubuntu 14.04. To install
the dependencies, these commands should be used:

Afterwards the repository can be cloned:

Finally, the analyzer can started with these commands:

The script will analyze the File in the samples directory. The results will be printed when
all the computation is done. Every file will be mentioned in the output. The output could
look like this:

match:	True denotes that EconBiz found an entry. quality refers to the likelihood that
the entry found by EconBiz and and file that has been processes correspond. id,	title
and participant refer to the entry found by EconBiz.

sudo	apt- get	install	- y	python	python- pip	git

sudo	pip	install	fuzzywuzzy	PyPDF2	pdfminer


git	clone	purl.org/ eexcess/ components/ research/ bloganalyzer

cd	DataAnalyzer/ eu/ zbw/

python	pdfMetadataExtractor.py


10.	match: 	True

quality: 	90

filename: 	bakken_fullactivity_Jan3- 2013.pdf

id: 	10004941699

title: 	Staff	report	Research	Department	of	the	Federal	Reserve	Bank	of	Minnea

polis

participant: 	Minneapolis,	Minn.	: 	Federal	Reserve	Bank	of	Minneapolis



	Executive Summary
	Introduction
	Purpose of this Document
	Scope of this Document
	Status of this Document
	Related Documents

	Overview
	Publications

	Context Detection & Query Construction Concept
	Detailed Context Detection and Query Construction per Granularity Level
	Phrase Level
	Paragraph Level
	Page Level
	Session Level

	Entity and Category Detection
	Named Entity Annotation
	Category Annotation
	Main Topic Detection

	Keyword Extraction and Filtering
	Keyword Extraction
	Filtering and Personalization

	Embedded Context Detection
	Perfomance Evaluation
	Study Setup and Participants
	Paragraph Detection and Extraction
	Suitability of Main Topic
	Query Performance

	Summary

	Context Detection Library and Services
	Software
	Source Code and License
	Installation and Usage

	Context Detection Prototype: Browser Extension
	Source Code and License
	Installation and Usage

	Resource Mining
	Corpora
	Prototypes
	Source Code and License

	Privacy-Preserving Usage Analysis Concept
	Purpose
	Usage Data
	Privacy-Preserving Usage Analysis

	Privacy-Preserving Usage Analysis Libraries
	Privacy-Preserving Usage Analysis Component
	Summary
	References
	Appendix: Source Code Documentation

